Skip to main content

Overture: Ramsey’s Theorem

  • Chapter
  • First Online:
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2851 Accesses

Abstract

In this chapter, the following theorem—which can be considered as the nucleus of Ramsey Theory—will be discussed in great detail.

Theorem 4.1 (Ramsey’s Theorem). For any number nω, for any positive number rω, for any S ∈ [ω]ω, and for any colouring π: [S]nr, there is always an H ∈ [S]ω such that H is homogeneous for π, i.e., the set [H]n is monochromatic.

Musicians in the past, as well as the best of the moderns, believed that a counterpoint or other musical composition should begin on a perfect consonance, that is, a unison, fifth, octave, or compound of one of these.

Gioseffo Zarlino

Le Istitutioni Harmoniche, 1558

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Spiros A. Argyros and Stevo Todorčević, Ramsey Methods in Analysis, [Advanced Courses in Mathematics – CRM Barcelona], Birkhäuser, Basel, 2005.

    Google Scholar 

  2. Taras O. Banakh and Igor V. Protasov, Symmetry and colorings: some results and open problems, Izdatel’stvo Gomel’skogo Universiteta. Voprosy Algebry, vol. 17 (2001), 5–16.

    Google Scholar 

  3. Taras O. Banakh, Oleg V. Verbitski, and Yaroslav B. Vorobets, A Ramsey treatment of symmetry, The Electronic Journal of Combinatorics, vol. 7 #R52 (2000), 25pp.

    Google Scholar 

  4. Jörg Brendle, Lorenz Halbeisen, and Benedikt Löwe, Silver measurability and its relation to other regularity properties, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 138 (2005), 135–149.

    Google Scholar 

  5. Antoine Brunel and Louis Sucheston, B-convex Banach spaces, Mathematical Systems Theory, vol. 7 (1973), 294–299.

    Google Scholar 

  6. Dennis Devlin, Some partition theorems and ultrafilters onω, Ph.D. thesis (1979), Dartmouth College, Hanover (USA).

    Google Scholar 

  7. Paul Erdős, Problems and results in chromatic number theory, in Proof Techniques in Graph Theory (F. Harary, ed.), Academic Press, New York, 1969, pp. 47–55.

    Google Scholar 

  8. Paul Erdős and Richard Rado, A combinatorial theorem, Journal of the London Mathematical Society, vol. 25 (1950), 249–255.

    Google Scholar 

  9. Paul Erdős and George Szekerés, A combinatorial problem in geometry, Compositio Mathematica, vol. 2 (1935), 463–470.

    Google Scholar 

  10. Paul Erdős and András Hajnal, Research problem 2-5, Journal of Combinatorial Theory, vol. 2 (1967), 105.

    Google Scholar 

  11. W. Timothy Gowers, A new dichotomy for Banach spaces, Geometric and Functional Analysis, vol. 6 (1996), 1083–1093.

    Google Scholar 

  12. ——, An infinite Ramsey theorem and some Banach-space dichotomies, Annals of Mathematics (2), vol. 156 (2002), 797–833.

    Google Scholar 

  13. ——, Ramsey methods in Banach spaces, in Handbook of the geometry of Banach spaces, Vol. 2 (William B. Johnson and Joram Lindenstrauss, eds.), North-Holland, Amsterdam, 2003, pp. 1071–1097.

    Google Scholar 

  14. Ronald L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, Journal of Combinatorial Theory, vol. 4 (1968), 300.

    Google Scholar 

  15. ——, Some of my favorite problems in Ramsey theory, in Combinatorial Number Theory (Bruce Landman, Melvyn B. Nathanson, Jaroslav Nešetřil, Richard J. Nowakowski, and Carl Pomerance, eds.), Proceedings of the ‘Integers Conference 2005’ in Celebration of the 70th Birthday of Ronald Graham. Carrollton, Georgia, USA, October 27–30, 2005, Walter de Gruyter, Berlin, 2007, pp. 229–236.

    Google Scholar 

  16. Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey Theory, 2nd ed., J. Wiley & Sons, New York, 1980.

    Google Scholar 

  17. Lorenz Halbeisen, Fans and bundles in the graph of pairwise sums and products, The Electronic Journal of Combinatorics, 11(1) (2004) #R6, 11pp.

    Google Scholar 

  18. ——, Making doughnuts of Cohen reals, Mathematical Logic Quarterly, vol. 49 (2003), 173–178.

    Google Scholar 

  19. Lorenz Halbeisen and Norbert Hungerbühler, On generalized Carmichael numbers, Hardy-Ramanujan Journal, vol. 22 (1999), 8–22.

    Google Scholar 

  20. Lorenz Halbeisen and Edward W. Odell, On asymptotic models in Banach spaces, Israel Journal of Mathematics, vol. 139 (2004), 253–291.

    Google Scholar 

  21. Neil Hindman, Finite sums from sequences within cells of a partition of N, Journal of Combinatorial Theory (A), vol. 17 (1974), 1–11.

    Google Scholar 

  22. Neil Hindman and Dona Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, [De Gruyter Expostitions in Mathematics], Walter de Gruyter, New York, 1998.

    Google Scholar 

  23. Thomas Jech, The Axiom of Choice, Studies in Logic and the Foundations of Mathematics 75, North-Holland, Amsterdam, 1973.

    Google Scholar 

  24. Péter Komjáth, A coloring result for the plane, Journal of Applied Analysis, vol. 5 (1999), 113–117.

    Google Scholar 

  25. Mordechai Lewin, A new proof of a theorem of Erdős and Szekerés, The Mathematical Gazette, vol. 60 (1976), 136–138 (correction ibid., p. 298).

    Google Scholar 

  26. Keith R. Milliken, Ramsey’s theorem with sums or unions, Journal of Combinatorial Theory (A), vol. 18 (1975), 276–290.

    Google Scholar 

  27. Walter D. Morris and Valeriu Soltan, The Erdős-Szekeres problem on points in convex position – a survey, Bulletin of the American Mathematical Society, vol. 37 (2000), 437–458.

    Google Scholar 

  28. Edward W. Odell, Applications of Ramsey theorems to Banach space theory, in Notes in Banach Spaces (H.E. Lacey, ed.), University Press, Austin and London, Austin TX, 1980, pp. 379–404.

    Google Scholar 

  29. ——, On subspaces, asymptotic structure, and distortion of Banach spaces; connections with logic, in Analysis and Logic (Catherine Finet and Christian Michaux, eds.), [London Mathematical Society Lecture Note Series 262], Cambridge University Press, Cambridge, 2002, pp. 189–267.

    Google Scholar 

  30. Jeff B. Paris, Combinatorial statements independent of arithmetic, in Mathematics of Ramsey Theory (J. Nešetřil and V. Rödl, eds.), Springer-Verlag, Berlin, 1990, pp. 232–245.

    Google Scholar 

  31. Jeff B. Paris and Leo Harrington, A mathematical incompleteness in Peano arithmetic, in Handbook of Mathematical Logic (J. Barwise, ed.), North-Holland, Amsterdam, 1977, pp. 1133–1142.

    Google Scholar 

  32. Richard Rado, Direct decomposition of partitions, Journal of the London Mathematical Society, vol. 29 (1954), 71–83.

    Google Scholar 

  33. Stanisław P. Radziszowski, Small Ramsey numbers, The Electronic Journal of Combinatorics, Dynamic Surveys 1, (August 1, 2006), 60pp.

    Google Scholar 

  34. Frank P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society, Ser. II, vol. 30 (1930), 264–286.

    Google Scholar 

  35. ——, The Foundations of Mathematics and other Logical Essays, edited by R. B. Braithwaite, Kegan Paul, Trench, Trubner & Co., London, 1931.

    Google Scholar 

  36. Issai Schur, Über die Kongruenzx m + y m = z m (modp), Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 25 (1916), 114–117.

    Google Scholar 

  37. Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available online at: http://www.research.att.com/~njas/sequences/.

  38. Alexander Soifer, Issai Schur: Ramsey theory before Ramsey, Geombinatorics, vol. 5 (1995), 6–23.

    Google Scholar 

  39. Alan D. Taylor, A canonical partition relation for finite subsets of ω, Journal of Combinatorial Theory (A), vol. 21 (1976), 137–146.

    Google Scholar 

  40. Stevo Todorčević, Introduction to Ramsey Spaces, [Annals of Mathematics Studies 174], Princeton University Press, Princeton (New Jersey), 2010.

    Google Scholar 

  41. Vojkan Vuksanović, A proof of a partition theorem for \([\mathbb{Q}]^{n},\) Proceedings of the American Mathematical Society, vol. 130 (2002), 2857–2864.

    Google Scholar 

  42. Arthur Wieferich, Zum letzten Fermatschen Theorem, Journal für die Reine und Angewandte Mathematik, vol. 136 (1909), 293–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halbeisen, L.J. (2017). Overture: Ramsey’s Theorem. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-60231-8_4

Download citation

Publish with us

Policies and ethics