Skip to main content

A Feedback Mechanism Based on Granular Computing to Improve Consensus in GDM

  • Chapter
  • First Online:
Soft Computing Applications for Group Decision-making and Consensus Modeling

Abstract

Group decision making is an important task in real world activities. It consists in obtaining the best solution to a particular problem according to the opinions given by a set of decision makers. In such a situation, an important issue is the level of consensus achieved among the decision makers before making a decision. For this reason, different feedback mechanisms, which help decision makers for reaching the highest degree of consensus possible, have been proposed in the literature. In this contribution, we present a new feedback mechanism based on granular computing to improve consensus in group decision making problems. Granular computing is a framework of designing, processing, and interpretation of information granules, which can be used to obtain a required flexibility to improve the level of consensus within the group of decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso S, Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2013) A linguistic consensus model for web 2.0 communities. Appl Soft Comput 13(1):149–157

    Article  Google Scholar 

  2. Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2016) An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling. Expert Syst Appl 43(6):2985–2997

    Google Scholar 

  3. Bargiela A (2001)Interval and ellipsoidal uncertainty models. In: Pedrycz W (ed) Granular computing: an emerging paradigm. Physica-Verlag, pp 23–57

    Google Scholar 

  4. Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  5. Bordogna G, Fedrizzi M, Pasi A (1997) A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans Syst Man Cybern—Part A: Syst Humans 27(1):126–133

    Article  Google Scholar 

  6. Butler CT, Rothstein A (2006) On conflict and consensus: a handbook on formal consensus decision making. Tahoma Park

    Google Scholar 

  7. Cabrerizo FJ, Pérez IJ, Herrera-Viedma E (2010) Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl-Based Syst 23(2):169–181

    Article  Google Scholar 

  8. Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463

    Article  Google Scholar 

  9. Cabrerizo FJ, Heradio R, Pérez IJ, Herrera-Viedma E (2010) A selection process based on additive consistency to deal with incomplete fuzzy linguistic information. J Univers Comput Sci 16(1):62–81

    MathSciNet  MATH  Google Scholar 

  10. Cabrerizo FJ, Chiclana F, Al-Hmouz R, Morfeq A, Balamash AS, Herrera-Viedma E (2015) Fuzzy decision making and consensus: challenges. J Intell Fuzzy Syst 29(3):1109–1118

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen SJ, Hwang CL (1992) Fuzzy multiple attributive decision making: theory and its applications. Springer, Berlin

    Book  Google Scholar 

  12. Chiclana F, Herrera F, Herrera-Viedma E, Poyatos MC (1996) A classification method of alternatives of multiple preference ordering criteria based on fuzzy majority. J Fuzzy Math 4(4):801–813

    MathSciNet  MATH  Google Scholar 

  13. Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets Syst 97(1):33–48

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiclana F, Herrera F, Herrera-Viedma E (2002) A note on the internal consistency of various preference representations. Fuzzy Sets Syst 131(1):75–78

    Article  MathSciNet  MATH  Google Scholar 

  15. Chu J, Liu X, Wang Y, Chin K-S (2016) A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput Ind Eng 101:227–242

    Article  Google Scholar 

  16. Dong Y, Zhang H (2014) Multiperson decision making with different preference representation structures: a direct consensus framework and its properties. Knowl-Based Syst 58:45–57

    Article  Google Scholar 

  17. Dong Y, Xiao J, Zhang H, Wang T (2016) Managing consensus and weights in iterative multiple-attribute group decision making. Appl Soft Comput 48:80–90

    Article  Google Scholar 

  18. Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  19. Herrera F, Herrera-Viedma E, Verdegay JL (1996) A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst 78(1):73–87

    Article  MathSciNet  MATH  Google Scholar 

  20. Herrera F, Herrera-Viedma E, Verdegay JL (1997) A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets Syst 88(1):31–49

    Article  MATH  Google Scholar 

  21. Herrera F, Herrera-Viedma E, Verdegay JL (1997) Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making. Int J Approx Reason 16(3–4):309–334

    Article  MATH  Google Scholar 

  22. Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern—Part A: Syst Humans 32(3):394–402

    Article  MATH  Google Scholar 

  23. Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issues on consistency of fuzzy preference relations. Eur J Oper Res 154(1):98–109

    Article  MathSciNet  MATH  Google Scholar 

  24. Herrera-Viedma E, Martínez L, Mata F, Chiclana F (2005) A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans Fuzzy Syst 13(5):644–658

    Article  Google Scholar 

  25. Herrera-Viedma E, Alonso S, Chiclana F, Herrera F (2007) A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Trans Fuzzy Syst 15(5):863–877

    Article  MATH  Google Scholar 

  26. Herrera-Viedma E, Herrera F, Alonso S (2007) Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans Syst Man Cybern—Part B: Cybern 37(1):176–189

    Article  MATH  Google Scholar 

  27. Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13

    Article  Google Scholar 

  28. Kacprzyk J, Fedrizzi M (1986) ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybern 15(3–4):309–323

    MathSciNet  MATH  Google Scholar 

  29. Kacprzyk J, Fedrizzi M (1988) A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. Eur J Oper Res 34(3):316–325

    Article  MathSciNet  Google Scholar 

  30. Kacprzyk J, Fedrizzi M, Nurmi H (1992) Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst 49(1):21–31

    Article  MathSciNet  MATH  Google Scholar 

  31. Kacprzyk K, Zadrozny S, Ras ZW (2010) How to support consensus reaching using action rules: a novel approach. Int J Uncertain Fuzziness Knowl-Based Syst 18(4):451–470

    Article  MathSciNet  Google Scholar 

  32. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  33. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  34. Orlovski SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1(3):155–167

    Article  MathSciNet  Google Scholar 

  35. Ma L-C (2016) A new group ranking approach for ordinal preferences based on group maximum consensus sequences. Eur J Oper Res 251(1):171–181

    Article  MathSciNet  MATH  Google Scholar 

  36. Palomares I, Estrella FJ, Martínez L, Herrera F (2014) Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Inf Fusion 20:252–271

    Article  Google Scholar 

  37. Pawlak Z (1981) Information systems theoretical foundations. Inf Syst 6(3):205–218

    Article  MATH  Google Scholar 

  38. Pedrycz W (2011) The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J Inf Process Syst 7(3):397–412

    Article  Google Scholar 

  39. Pedrycz A, Hirota K, Pedrycz W, Dong F (2012) Granular representation and granular computing with fuzzy sets. Fuzzy Sets Syst 203:17–32

    Article  MathSciNet  Google Scholar 

  40. Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press/Francis Taylor, Boca Raton

    Book  Google Scholar 

  41. Pedrycz W (2013) Knowledge management and semantic modeling: a role of information granularity. Int J Softw Eng Knowl 23(1):5–12

    Article  Google Scholar 

  42. Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern—Part A: Syst Humans 40(6):1244–1256

    Article  Google Scholar 

  43. Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2011) Group decision making problems in a linguistic and dynamic context. Expert Syst Appl 38(3):1675–1688

    Article  Google Scholar 

  44. Pérez IJ, Cabrerizo FJ, Alonso S, Herrera-Viedma E (2014) A new consensus model for group decision making problems with non homogeneous experts. IEEE Trans Syst Man Cybern: Syst 44(4):494–498

    Article  Google Scholar 

  45. Saint S, Lawson JR (1994) Rules for reaching consensus: a modern approach to decision making. Jossey-Bass

    Google Scholar 

  46. Slowinski R, Greco S, Matarazzo B (2002) Rough set analysis of preference-ordered data. In: Alpigini JJ, Peters JF, Skowron A, Zhong N (eds) Rough sets and current trends in computing, pp 44–59. Springer

    Google Scholar 

  47. Tanino T (1984) Fuzzy preference orderings in group decision making. Fuzzy Sets Syst 12(2):117–131

    Article  MathSciNet  MATH  Google Scholar 

  48. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    Article  MathSciNet  MATH  Google Scholar 

  49. Ureña MR, Cabrerizo FJ, Morente-Molinera JA, Herrera-Viedma E (2016) GDM-R: a new framework in R to support fuzzy group decision making processes. Inf Sci 357:161–181

    Article  Google Scholar 

  50. Wang X, Pedrycz W, Gacek A, Liu X (2016) From numeric data to information granules: a design through clustering and the principle of justifiable granularity. Knowl-Based Syst 101:100–113

    Article  Google Scholar 

  51. Wu Z, Xu J (2016) Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65:28–40

    Article  Google Scholar 

  52. Xu Y, Patnayakuni R, Wang H (2013) The ordinal consistency of a fuzzy preference relation. Inf Sci 224:152–164

    Article  MathSciNet  MATH  Google Scholar 

  53. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18(1):183–190

    Article  MATH  Google Scholar 

  54. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  55. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part I. Inf Sci 8(3):199–243

    Article  MATH  Google Scholar 

  56. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part II. Inf Sci 8(4):301–357

    Article  MATH  Google Scholar 

  57. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part III. Inf Sci 9(1):43–80

    Article  MATH  Google Scholar 

  58. Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural languages. Comput Math Appl 9(1):149–184

    Google Scholar 

  59. Zadeh LA (2002) Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. J Stat Plan Inference 105(1):233–264

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge FEDER financial support from the Projects TIN2013-40658-P and TIN2016-75850-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Cabrerizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cabrerizo, F.J., Chiclana, F., Pérez, I.J., Mata, F., Alonso, S., Herrera-Viedma, E. (2018). A Feedback Mechanism Based on Granular Computing to Improve Consensus in GDM. In: Collan, M., Kacprzyk, J. (eds) Soft Computing Applications for Group Decision-making and Consensus Modeling. Studies in Fuzziness and Soft Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-60207-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60207-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60206-6

  • Online ISBN: 978-3-319-60207-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics