Skip to main content

A Feedback Mechanism Based on Granular Computing to Improve Consensus in GDM

  • Chapter
  • First Online:
Soft Computing Applications for Group Decision-making and Consensus Modeling

Abstract

Group decision making is an important task in real world activities. It consists in obtaining the best solution to a particular problem according to the opinions given by a set of decision makers. In such a situation, an important issue is the level of consensus achieved among the decision makers before making a decision. For this reason, different feedback mechanisms, which help decision makers for reaching the highest degree of consensus possible, have been proposed in the literature. In this contribution, we present a new feedback mechanism based on granular computing to improve consensus in group decision making problems. Granular computing is a framework of designing, processing, and interpretation of information granules, which can be used to obtain a required flexibility to improve the level of consensus within the group of decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso S, Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2013) A linguistic consensus model for web 2.0 communities. Appl Soft Comput 13(1):149–157

    Article  Google Scholar 

  2. Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2016) An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling. Expert Syst Appl 43(6):2985–2997

    Google Scholar 

  3. Bargiela A (2001)Interval and ellipsoidal uncertainty models. In: Pedrycz W (ed) Granular computing: an emerging paradigm. Physica-Verlag, pp 23–57

    Google Scholar 

  4. Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  5. Bordogna G, Fedrizzi M, Pasi A (1997) A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans Syst Man Cybern—Part A: Syst Humans 27(1):126–133

    Article  Google Scholar 

  6. Butler CT, Rothstein A (2006) On conflict and consensus: a handbook on formal consensus decision making. Tahoma Park

    Google Scholar 

  7. Cabrerizo FJ, Pérez IJ, Herrera-Viedma E (2010) Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl-Based Syst 23(2):169–181

    Article  Google Scholar 

  8. Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463

    Article  Google Scholar 

  9. Cabrerizo FJ, Heradio R, Pérez IJ, Herrera-Viedma E (2010) A selection process based on additive consistency to deal with incomplete fuzzy linguistic information. J Univers Comput Sci 16(1):62–81

    MathSciNet  MATH  Google Scholar 

  10. Cabrerizo FJ, Chiclana F, Al-Hmouz R, Morfeq A, Balamash AS, Herrera-Viedma E (2015) Fuzzy decision making and consensus: challenges. J Intell Fuzzy Syst 29(3):1109–1118

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen SJ, Hwang CL (1992) Fuzzy multiple attributive decision making: theory and its applications. Springer, Berlin

    Book  Google Scholar 

  12. Chiclana F, Herrera F, Herrera-Viedma E, Poyatos MC (1996) A classification method of alternatives of multiple preference ordering criteria based on fuzzy majority. J Fuzzy Math 4(4):801–813

    MathSciNet  MATH  Google Scholar 

  13. Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets Syst 97(1):33–48

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiclana F, Herrera F, Herrera-Viedma E (2002) A note on the internal consistency of various preference representations. Fuzzy Sets Syst 131(1):75–78

    Article  MathSciNet  MATH  Google Scholar 

  15. Chu J, Liu X, Wang Y, Chin K-S (2016) A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput Ind Eng 101:227–242

    Article  Google Scholar 

  16. Dong Y, Zhang H (2014) Multiperson decision making with different preference representation structures: a direct consensus framework and its properties. Knowl-Based Syst 58:45–57

    Article  Google Scholar 

  17. Dong Y, Xiao J, Zhang H, Wang T (2016) Managing consensus and weights in iterative multiple-attribute group decision making. Appl Soft Comput 48:80–90

    Article  Google Scholar 

  18. Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  19. Herrera F, Herrera-Viedma E, Verdegay JL (1996) A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst 78(1):73–87

    Article  MathSciNet  MATH  Google Scholar 

  20. Herrera F, Herrera-Viedma E, Verdegay JL (1997) A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets Syst 88(1):31–49

    Article  MATH  Google Scholar 

  21. Herrera F, Herrera-Viedma E, Verdegay JL (1997) Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making. Int J Approx Reason 16(3–4):309–334

    Article  MATH  Google Scholar 

  22. Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern—Part A: Syst Humans 32(3):394–402

    Article  MATH  Google Scholar 

  23. Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issues on consistency of fuzzy preference relations. Eur J Oper Res 154(1):98–109

    Article  MathSciNet  MATH  Google Scholar 

  24. Herrera-Viedma E, Martínez L, Mata F, Chiclana F (2005) A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans Fuzzy Syst 13(5):644–658

    Article  Google Scholar 

  25. Herrera-Viedma E, Alonso S, Chiclana F, Herrera F (2007) A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Trans Fuzzy Syst 15(5):863–877

    Article  MATH  Google Scholar 

  26. Herrera-Viedma E, Herrera F, Alonso S (2007) Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans Syst Man Cybern—Part B: Cybern 37(1):176–189

    Article  MATH  Google Scholar 

  27. Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13

    Article  Google Scholar 

  28. Kacprzyk J, Fedrizzi M (1986) ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybern 15(3–4):309–323

    MathSciNet  MATH  Google Scholar 

  29. Kacprzyk J, Fedrizzi M (1988) A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. Eur J Oper Res 34(3):316–325

    Article  MathSciNet  Google Scholar 

  30. Kacprzyk J, Fedrizzi M, Nurmi H (1992) Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst 49(1):21–31

    Article  MathSciNet  MATH  Google Scholar 

  31. Kacprzyk K, Zadrozny S, Ras ZW (2010) How to support consensus reaching using action rules: a novel approach. Int J Uncertain Fuzziness Knowl-Based Syst 18(4):451–470

    Article  MathSciNet  Google Scholar 

  32. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  33. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  34. Orlovski SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1(3):155–167

    Article  MathSciNet  Google Scholar 

  35. Ma L-C (2016) A new group ranking approach for ordinal preferences based on group maximum consensus sequences. Eur J Oper Res 251(1):171–181

    Article  MathSciNet  MATH  Google Scholar 

  36. Palomares I, Estrella FJ, Martínez L, Herrera F (2014) Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Inf Fusion 20:252–271

    Article  Google Scholar 

  37. Pawlak Z (1981) Information systems theoretical foundations. Inf Syst 6(3):205–218

    Article  MATH  Google Scholar 

  38. Pedrycz W (2011) The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J Inf Process Syst 7(3):397–412

    Article  Google Scholar 

  39. Pedrycz A, Hirota K, Pedrycz W, Dong F (2012) Granular representation and granular computing with fuzzy sets. Fuzzy Sets Syst 203:17–32

    Article  MathSciNet  Google Scholar 

  40. Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press/Francis Taylor, Boca Raton

    Book  Google Scholar 

  41. Pedrycz W (2013) Knowledge management and semantic modeling: a role of information granularity. Int J Softw Eng Knowl 23(1):5–12

    Article  Google Scholar 

  42. Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern—Part A: Syst Humans 40(6):1244–1256

    Article  Google Scholar 

  43. Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2011) Group decision making problems in a linguistic and dynamic context. Expert Syst Appl 38(3):1675–1688

    Article  Google Scholar 

  44. Pérez IJ, Cabrerizo FJ, Alonso S, Herrera-Viedma E (2014) A new consensus model for group decision making problems with non homogeneous experts. IEEE Trans Syst Man Cybern: Syst 44(4):494–498

    Article  Google Scholar 

  45. Saint S, Lawson JR (1994) Rules for reaching consensus: a modern approach to decision making. Jossey-Bass

    Google Scholar 

  46. Slowinski R, Greco S, Matarazzo B (2002) Rough set analysis of preference-ordered data. In: Alpigini JJ, Peters JF, Skowron A, Zhong N (eds) Rough sets and current trends in computing, pp 44–59. Springer

    Google Scholar 

  47. Tanino T (1984) Fuzzy preference orderings in group decision making. Fuzzy Sets Syst 12(2):117–131

    Article  MathSciNet  MATH  Google Scholar 

  48. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    Article  MathSciNet  MATH  Google Scholar 

  49. Ureña MR, Cabrerizo FJ, Morente-Molinera JA, Herrera-Viedma E (2016) GDM-R: a new framework in R to support fuzzy group decision making processes. Inf Sci 357:161–181

    Article  Google Scholar 

  50. Wang X, Pedrycz W, Gacek A, Liu X (2016) From numeric data to information granules: a design through clustering and the principle of justifiable granularity. Knowl-Based Syst 101:100–113

    Article  Google Scholar 

  51. Wu Z, Xu J (2016) Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65:28–40

    Article  Google Scholar 

  52. Xu Y, Patnayakuni R, Wang H (2013) The ordinal consistency of a fuzzy preference relation. Inf Sci 224:152–164

    Article  MathSciNet  MATH  Google Scholar 

  53. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18(1):183–190

    Article  MATH  Google Scholar 

  54. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  55. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part I. Inf Sci 8(3):199–243

    Article  MATH  Google Scholar 

  56. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part II. Inf Sci 8(4):301–357

    Article  MATH  Google Scholar 

  57. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part III. Inf Sci 9(1):43–80

    Article  MATH  Google Scholar 

  58. Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural languages. Comput Math Appl 9(1):149–184

    Google Scholar 

  59. Zadeh LA (2002) Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. J Stat Plan Inference 105(1):233–264

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge FEDER financial support from the Projects TIN2013-40658-P and TIN2016-75850-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Cabrerizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cabrerizo, F.J., Chiclana, F., Pérez, I.J., Mata, F., Alonso, S., Herrera-Viedma, E. (2018). A Feedback Mechanism Based on Granular Computing to Improve Consensus in GDM. In: Collan, M., Kacprzyk, J. (eds) Soft Computing Applications for Group Decision-making and Consensus Modeling. Studies in Fuzziness and Soft Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-60207-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60207-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60206-6

  • Online ISBN: 978-3-319-60207-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics