Advertisement

An Intelligent Operator Support System for Dynamic Positioning

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 599)

Abstract

This paper proposes a human-centered approach to Dynamic Positioning systems which combines multiple technologies in an intelligent operator support system (IOSS). IOSS allows the operator to be roaming and do other tasks in quiet conditions. When conditions become more demanding, the IOSS calls the operator to return to his bridge position. In particular, attention is paid to human factors issues such as trust misalignment, and context-aware interfaces.

Keywords

Cognitive systems engineering Personal assistants Dynamic positioning Predictive analytics 

References

  1. 1.
    Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)CrossRefGoogle Scholar
  2. 2.
    Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 19(6), 91–95 (2004)CrossRefGoogle Scholar
  3. 3.
    Neerincx, M.A., Lindenberg, J.: Situated cognitive engineering for complex task environments. In: Schraagen, J.M., Militello, L.G., Ormerod, T., Lipshitz, R. (eds.) Naturalistic Decision Making and Macrocognition, pp. 373–389. Ashgate Publishing Limited, Aldershot (2008)Google Scholar
  4. 4.
    Endsley, M.R.: From here to autonomy: lessons learned from human–automation research. Hum. Factors (2016). doi: 10.1177/0018720816681350
  5. 5.
    Sarter, N.B., Woods, D.D.: How in the world did we ever get into that mode? Mode error and awareness in supervisory control. Hum. Factors 37(1), 5–19 (1995)CrossRefGoogle Scholar
  6. 6.
    Kaber, D.B., Endsley, M.R.: Out-of-the-loop performance problems and the use of intermediate levels of automation for improved control system functioning and safety. Process Saf. Prog. 16(3), 126–131 (1997)CrossRefGoogle Scholar
  7. 7.
    Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors: J. Hum. Factors Ergon. Soc. 46(1), 50–80 (2004)CrossRefGoogle Scholar
  8. 8.
    Bullemer, P.T., Tolsma, M., Reising, D.V.C., Laberge, J.C.: Towards improving operator alarm flood responses: alternative alarm presentation techniques. Abnormal Situation Management Consortium (2011)Google Scholar
  9. 9.
    van Diggelen, J., Grootjen, M., Ubink, E.M., van Zomeren, M., Smets, N.J.: Content-based design and implementation of ambient intelligence applications. In: van Berlo, A., Hallenborg, K., Rodríguez, J., Tapia, D., Novais, P. (eds.) Ambient Intelligence-Software and Applications, pp. 1–8. Springer International Publishing, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Lee, H.G.: A study on predictive analytics application to ship machinery maintenance. Doctoral dissertation, Naval Postgraduate School, Monterey, California (2013)Google Scholar
  11. 11.
    Singh, H., Bhatia, J.S., Kaur, J.: Eye tracking based driver fatigue monitoring and warning system. In: 2010 India International Conference on Power Electronics (IICPE), pp. 1–6. IEEE, January 2011Google Scholar
  12. 12.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bradshaw, J.M., Feltovich, P., Johnson, M., Breedy, M., Bunch, L., Eskridge, T., Jung, H., Lott, J., Uszok, A., Diggelen, J.: From tools to teammates: joint activity in human-agent-robot teams. In: Kurosu, M. (ed.) Human Centered Design, pp. 935–944. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum. Comput. Stud. 43(5–6), 625–640 (1995)CrossRefGoogle Scholar
  15. 15.
    van Diggelen, J., van Drimmelen, K., Heuvelink, A., Kerbusch, P.J., Neerincx, M.A., van Trijp, S., van der Vecht, B.: Mutual empowerment in mobile soldier support. J. Battlefield Technol. 15(1), 11 (2012)Google Scholar
  16. 16.
    Arciszewski, H.F., De Greef, T.E., Van Delft, J.H.: Adaptive automation in a naval combat management system. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 39(6), 1188–1199 (2009)CrossRefGoogle Scholar
  17. 17.
    ANSI/ISA–18.2–2009: Management of Alarm Systems for the Process Industries (2009). http://ipi.ir/standard/STANDS/ISA/18.2.pdf
  18. 18.
    Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the National Conference on Artificial Intelligence, pp. 900–907. AAAI Press/MIT Press, Menlo Park/Cambridge/London, July 2004Google Scholar
  19. 19.
    Neerincx, M.A., Diggelen, J., Breda, L.: Interaction design patterns for adaptive human-agent-robot teamwork in high-risk domains. In: Harris, D. (ed.) Engineering Psychology and Cognitive Ergonomics, pp. 211–220. Springer, Cham (2016)Google Scholar
  20. 20.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. knowl. Eng. Rev. 10(02), 115–152 (1995)CrossRefGoogle Scholar
  21. 21.
    Bunch, L., Breedy, M., Bradshaw, J.M., Carvalho, M., Danks, D., Suri, N.: Flexible automated monitoring and notification for complex processes using KARMEN. In: 2005 Proceedings of IEEE Networking, Sensing and Control, pp. 443–448. IEEE, March 2005Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.TNOSoesterbergThe Netherlands

Personalised recommendations