Skip to main content

Aluminum and Alzheimer’s Disease

Part of the Advances in Neurobiology book series (NEUROBIOL,volume 18)

Abstract

Aluminum (Al) is one of the most extended metals in the Earth’s crust. Its abundance, together with the widespread use by humans, makes Al-related toxicity particularly relevant for human health.

Despite some factors influence individual bioavailability to this metal after oral, dermal, or inhalation exposures, humans are considered to be protected against Al toxicity because of its low absorption and efficient renal excretion. However, several factors can modify Al absorption and distribution through the body, which may in turn progressively contribute to the development of silent chronic exposures that may lately trigger undesirable consequences to health. For instance, Al has been recurrently shown to cause encephalopathy, anemia, and bone disease in dialyzed patients. On the other hand, it remains controversial whether low doses of this metal may contribute to developing Alzheimer’s disease (AD), probably because of the multifactorial and highly variable presentation of the disease.

This chapter primarily focuses on two key aspects related to Al neurotoxicity and AD, which are metabolic impairment and iron (Fe) alterations. We discuss sex and genetic differences as a plausible source of bias to assess risk assessment in human populations.

Keywords

  • Neurodegeneration
  • Aluminum
  • Transferrin (Tf)
  • Iron (Fe)
  • Sex differences
  • Glucose homeostasis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-60189-2_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-60189-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Abu-Taweel GM, Ajarem JS, Ahmad M. Neurobehavioral toxic effects of perinatal oral exposure to aluminum on the developmental motor reflexes, learning, memory and brain neurotransmitters of mice offspring. Pharmacol Biochem Behav. 2012;101(1):49–56.

    CAS  CrossRef  PubMed  Google Scholar 

  • AI-Ashmawy MAM. Prevalence and public health significance of aluminum residues in milk and some dairy products. J Food Sci. 2011;76(3):T73–6.

    CrossRef  Google Scholar 

  • Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(33):940–59.

    CAS  CrossRef  PubMed  Google Scholar 

  • Akatsu H, et al. Transition metal abnormalities in progressive dementias. Biometals. 2012;25(2):337–50.

    CAS  CrossRef  PubMed  Google Scholar 

  • Akiyama H, et al. Long-term oral intake of aluminium or zinc does not accelerate Alzheimer pathology in AβPP and AβPP/tau transgenic mice. Neuropathology. 2012;32(4):390–7.

    CrossRef  PubMed  Google Scholar 

  • Altmann A, et al. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anon. Statement of EFSA on the Evaluation of a new study related to the bioavailability of aluminium in food. EFSA Journal. 2011;9(5):2157.

    CrossRef  Google Scholar 

  • Banks WA, et al. Aluminum complexing enhances amyloid β protein penetration of blood–brain barrier. Brain Res. 2006;1116(1):215–21.

    CAS  CrossRef  PubMed  Google Scholar 

  • Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9

    Google Scholar 

  • Bayless DW, et al. Sex differences in attentional processes in adult rats as measured by performance on the 5-choice serial reaction time task. Behav Brain Res. 2012;235(1):48–54.

    CrossRef  PubMed  Google Scholar 

  • Bellés M, et al. Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease. Alzheimer Dis Assoc Disord. 1998;12(2):83–7.

    CrossRef  PubMed  Google Scholar 

  • Beydoun MA, et al. Apolipoprotein E ε4 allele interacts with sex and cognitive status to influence all-cause and cause-specific mortality in U.S. older adults. J Am Geriatr Soc. 2013;61(4):525–34.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bielarczyk H, Tomaszewicz M, Szutowicz A. Effect of aluminum on acetyl-CoA and acetylcholine metabolism in nerve terminals. J Neurochem. 1998;70(3):1175–81.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bolognin S, et al. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1–42 aggregation and toxicity. Int J Biochem Cell Biol. 2011;43(6):877–85.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology. 2016;52:222–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Burrell, S.-A.M. & Exley, C., 2010. There is (still) too much aluminium in infant formulas. BMC Pediatrics, 10(1), p.63.

    Google Scholar 

  • Cannata JB, et al. Role of iron metabolism in absorption and cellular uptake of aluminum. Kidney Int. 1991;39(4):799–803.

    CAS  CrossRef  PubMed  Google Scholar 

  • Caspers ML, Dow MJ, Mei-Jun F, Jacques PS, Kwaiser TM. Aluminum-induced alterations in [3H]Ouabain binding and ATP hydrolysis catalyzed by the rat brain synaptosomal (Na+ + K+)-ATPase? Mol Chem Neuropathol. 1994;22(1):43–55.

    CAS  CrossRef  PubMed  Google Scholar 

  • Colomina MT, et al. Influence of age on aluminum-induced neurobehavioral effects and morphological changes in rat brain. Neurotoxicology. 2002;23(6):775–81.

    CAS  CrossRef  PubMed  Google Scholar 

  • Cornutiu G. The epidemiological scale of Alzheimer’s disease. J Clin Med Res. 2015;7(9):657–66.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Crisponi G, et al. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol Concepts. 2013;4(1)

    Google Scholar 

  • Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005;99(9):1912–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Domingo JL, Gómez M, Colomina MT. Oral silicon supplementation: an effective therapy for preventing oral aluminum absorption and retention in mammals. Nutr Rev. 2011;69(1)

    Google Scholar 

  • Dua R, Kumar V, Sunkaria A, Gill KD. Altered glucose homeostasis in response to aluminium phosphide induced cellular oxygen deficit in rat. Indian J Exp Biol. 2010;48(7):722–30.

    CAS  PubMed  Google Scholar 

  • Duggan JM, et al. Aluminium beverage cans as a dietary source of aluminium. Med J Aust. 1992;156(9):604–5.

    CAS  PubMed  Google Scholar 

  • Esparza JL, et al. Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin. J Pineal Res. 2003;35(1):32–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Exley C. The pro-oxidant activity of aluminum. Free Radic Biol Med. 2004;36(3):380–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • FAO, Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Geneva, 2006.

    Google Scholar 

  • Fattoretti P, et al. The effect of chronic aluminum(III) administration on the nervous system of aged rats: clues to understand its suggested role in Alzheimer’s disease. J Alzheimer’s Dis JAD. 2003;5(6):437–44.

    CAS  CrossRef  PubMed  Google Scholar 

  • Fenwick S, et al. In end-stage renal failure, does infection lead to elevated plasma aluminium and neurotoxicity? Implications for monitoring. Ann Clin Biochem. 2005;42(2):149–52.

    CrossRef  PubMed  Google Scholar 

  • Flaten TP. Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer’s disease), Parkinson’s disease and amyotrophic lateral sclerosis in Norway. Environ Geochem Health. 1990;12(1–2, 152):–167.

    Google Scholar 

  • Gao S, et al. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry. 1998;55(9):809–15.

    CAS  CrossRef  PubMed  Google Scholar 

  • García T, et al. Evaluation of the protective role of melatonin on the behavioral effects of aluminum in a mouse model of Alzheimer’s disease. Toxicology. 2009;265(1–2):49–55.

    CrossRef  PubMed  Google Scholar 

  • Giacobini E. Cholinergic function and Alzheimer’s disease. Int J Geriatr Psychiatry. 2003;18(Suppl 1):S1–5.

    CrossRef  PubMed  Google Scholar 

  • Girbovan C, Plamondon H. Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behav Brain Res. 2013;253:178–90.

    CAS  CrossRef  PubMed  Google Scholar 

  • Han S, et al. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol. 2013;29(2):75–84.

    CAS  CrossRef  PubMed  Google Scholar 

  • Harris WR, et al. Speciation of aluminum in biological systems. J Toxicol Environ Health. 1996;48(6):543–68.

    CAS  CrossRef  PubMed  Google Scholar 

  • Higgins GA, et al. Apolipoprotein E and Alzheimer’s disease: a review of recent studies. Pharmacol Biochem Behav. 1997;56(4):675–85.

    CAS  CrossRef  PubMed  Google Scholar 

  • Iglesias-González J, et al. Effects of Aluminium on rat brain mitochondria bioenergetics: an in vitro and in vivo study. Mol Neurobiol. 2016:1–8.

    Google Scholar 

  • Johnson VJ, et al. Decreased membrane fluidity and hyperpolarization in aluminum-treated PC-12 cells correlates with increased production of cellular oxidants. Environ Toxicol Pharmacol. 2005;19(2):221–30.

    CAS  CrossRef  PubMed  Google Scholar 

  • Jonasson Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev. 2005;28(8):811–25.

    CrossRef  PubMed  Google Scholar 

  • Joshi JG. Aluminum, a neurotoxin which affects diverse metabolic reactions. Biofactors. 1990;2(3):163–9.

    CAS  PubMed  Google Scholar 

  • Joshi JG, et al. Iron and aluminum homeostasis in neural disorders. Environ Health Perspects. 1994;102:207–13.

    CAS  CrossRef  Google Scholar 

  • Jovanović MD, Jelenković A, Stevanović ID, Bokonjić D, Colić M, Petronijević N, Stanimirović DB. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus. Indian J Med Res. 2014;139(6):864–72.

    PubMed  PubMed Central  Google Scholar 

  • Kaizer RR, Maldonado PA, Spanevello RM, Corrêa MC, Gonçalves JF, Becker LV, Morsch VM, Schetinger MRC. The effect of aluminium on NTPDase and 5′-nucleotidase activities from rat synaptosomes and platelets. Int J Dev Neurosci. 2007;25(6):381–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaneko N, Sugioka T, Sakurai H. Aluminum compounds enhance lipid peroxidation in liposomes: insight into cellular damage caused by oxidative stress. J Inorg Biochem. 2007;101(6):967–75.

    CAS  CrossRef  PubMed  Google Scholar 

  • Kim Y, et al. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol. 2007;220(3):349–56.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Krewski, D. et al., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, 2007.

    Google Scholar 

  • Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology. 2014;41:154–66.

    CAS  CrossRef  PubMed  Google Scholar 

  • Leterrier JF, et al. A molecular mechanism for the induction of neurofilament bundling by aluminum ions. J Neurochem. 1992;58(6):2060–70.

    CAS  CrossRef  PubMed  Google Scholar 

  • Levy-Lahad E, Tsuang D, Bird TD. Recent advances in the genetics of Alzheimer’s disease. J Geriatr Psychiatry Neurol. 1998;11(2):42–54.

    CAS  CrossRef  PubMed  Google Scholar 

  • Li R, Singh M. Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrinol. 2014;35(3):385–403.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu Y, et al. Memory performance, brain excitatory amino acid and acetylcholinesterase activity of chronically aluminum exposed mice in response to soy isoflavones treatment. Phytother Res. 2010;24(10):1451–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Malik J, et al. Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chem. 2008;111(2):520–5.

    CAS  CrossRef  PubMed  Google Scholar 

  • Martin RB, Bruce R. In: Yasui M, et al., editors. Mineral and metal neurotoxicology; 1997.

    Google Scholar 

  • Maynard CJ, et al. Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer β-amyloid pathology. J Inorg Biochem. 2006;100(5–6):952–62.

    CAS  CrossRef  PubMed  Google Scholar 

  • Mazure CM, Swendsen J. Sex differences in Alzheimer’s disease and other dementias. Lancet Neurology. 2016;15(5):451–2.

    CrossRef  PubMed  Google Scholar 

  • Mićić DV, Petronijević ND, Vucetić SS. Superoxide dismutase activity in the mongolian gerbil brain after acute poisoning with aluminum. Journal of Alzheimer’s disease : JAD. 2003;5(1):49–56.

    CrossRef  PubMed  Google Scholar 

  • Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: behavioral consequences. Curr Top Behav Neurosci. 2011;8:57–71.

    CAS  CrossRef  PubMed  Google Scholar 

  • Miu AC, et al. A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int J Neurosci. 2003;113(9):1197–211.

    CrossRef  PubMed  Google Scholar 

  • Mohamd EM, et al. Windows into estradiol effects in Alzheimer’s disease therapy. Eur Rev Med Pharmacol Sci. 2011;15(10):1131–40.

    CAS  PubMed  Google Scholar 

  • Moore PB, et al. Absorption of aluminium-26 in Alzheimer’s disease, measured using accelerator mass spectrometry. Dement Geriatr Cogn Disord. 2000;11(2):66–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav. 1997;56(4):687–96.

    CAS  CrossRef  PubMed  Google Scholar 

  • Neha S, Dhawan DK. Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res. 2012;90(3):698–705.

    CrossRef  Google Scholar 

  • Nübling G, et al. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level. Mol Neurodegener. 2012;7:35.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ohman LO, Martin RB. Citrate as the main small molecule binding Al3+ in serum. Clin Chem. 1994;40(4):598–601.

    CAS  PubMed  Google Scholar 

  • Oshiro S, et al. Glial cells contribute more to iron and aluminum accumulation but are more resistant to oxidative stress than neuronal cells. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2000;1502(3):405–14.

    CAS  CrossRef  Google Scholar 

  • Pauluhn J. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum Oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci. 2009;109(1):152–67.

    CAS  CrossRef  PubMed  Google Scholar 

  • Praticò D, et al. Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J Off Publ Feder Am Soc Exp Biol. 2002;16(9):1138–40.

    Google Scholar 

  • Ribes D, et al. Effects of oral aluminum exposure on behavior and neurogenesis in a transgenic mouse model of Alzheimer’s disease. Exp Neurol. 2008;214(2)

    Google Scholar 

  • Ribes D, et al. Impaired spatial learning and unaltered neurogenesis in a transgenic model of alzheimer’s disease after oral aluminum exposure. Curr Alzheimer Res. 2010;7(5)

    Google Scholar 

  • Ridge PG, Ebbert MTW, Kauwe JSK. Genetics of Alzheimer’s disease. Biomed Res Int. 2013;2013:254954.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Riihimäki V, et al. Body burden of aluminum in relation to central nervous system function among metal inert-gas welders. Scand J Work Environ Health. 2000;26(2):118–30.

    CrossRef  PubMed  Google Scholar 

  • Rondeau V, et al. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2008;169(4):489–96.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Roses, A.D., 1996. Apolipoprotein E and Alzheimer’s disease a rapidly expanding field with medical and epidemiological consequences. Annals of the New York Academy of Sciences, 802(1 Apolipoprotein), pp.50–57.

    Google Scholar 

  • Ruipérez F, et al. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J Inorg Biochem. 2012;117:118–23.

    CrossRef  PubMed  Google Scholar 

  • Rusina R, et al. Higher aluminum concentration in Alzheimer’s disease after box–cox data transformation. Neurotox Res. 2011;20(4):329–33.

    CAS  CrossRef  PubMed  Google Scholar 

  • Sánchez-Iglesias S, et al. Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson’s disease. J Neurochem. 2009;109(3):879–88.

    CrossRef  PubMed  Google Scholar 

  • Schellenberg GD, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science (New York, NY). 1992;258(5082):668–71.

    CAS  CrossRef  Google Scholar 

  • Schwalfenberg GK, Genuis SJ. Vitamin D, essential minerals, and toxic elements: exploring interactions between nutrients and toxicants in clinical medicine. Sci World J. 2015;2015:1–8.

    CrossRef  Google Scholar 

  • Silva VS, et al. Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neurosci Res. 2002;44(2):181–93.

    CAS  CrossRef  PubMed  Google Scholar 

  • Silva VS. Effect of chronic exposure to aluminium on isoform expression and activity of Rat (Na+/K+)ATPase. Toxicol Sci. 2005;88(2):485–94.

    CAS  CrossRef  PubMed  Google Scholar 

  • Simpson J, Kelly JP. An investigation of whether there are sex differences in certain behavioural and neurochemical parameters in the rat. Behav Brain Res. 2012;229(1):289–300.

    CAS  CrossRef  PubMed  Google Scholar 

  • Szutowicz A, et al. Acetyl-CoA metabolism in cholinergic neurons and their susceptibility to neurotoxic inputs. Metab Brain Dis. 2000;15(1):29–44.

    CAS  PubMed  Google Scholar 

  • Torreilles F, Touchon J. Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer’s disease. Prog Neurobiol. 2002;66(3):191–203.

    CrossRef  PubMed  Google Scholar 

  • Ungar L, Altmann A, Greicius MD. Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav. 2014;8(2):262–73.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Van den Bosch G, et al. Determination of iron metabolism-related reference values in a healthy adult population. Clin Chem. 2001;47(8)

    Google Scholar 

  • Verstraeten SV, et al. Myelin is a preferential target of aluminum-mediated oxidative damage. Arch Biochem Biophys. 1997;344(2):289–94.

    CAS  CrossRef  PubMed  Google Scholar 

  • Vučetić-Arsić S, et al. Oxidative stress precedes mitochondrial dysfunction in gerbil brain after aluminum ingestion. Environ Toxicol Pharmacol. 2013;36(3):1242–52.

    CrossRef  PubMed  Google Scholar 

  • Walton JR, Wang M-X. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem. 2009;103(11):1548–54.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wang Z, et al. Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett. 2016;610:200–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ward RJ, Zhang Y, Crichton RR. Aluminium toxicity and iron homeostasis. J Inorg Biochem. 2001;87(1):9–14.

    CAS  CrossRef  PubMed  Google Scholar 

  • Weafer J, de Wit H. Sex differences in impulsive action and impulsive choice. Addict Behav. 2014;39(11):1573–9.

    CrossRef  PubMed  Google Scholar 

  • WHO, Guidelines for drinking-water quality, Geneve, 2004.

    Google Scholar 

  • WHO, Aluminium in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, Geneva, 2010.

    Google Scholar 

  • Wilhelm M, Jäger DE, Ohnesorge FK. Aluminium toxicokinetics. Pharmacol Toxicol. 1990;66(1):4–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Willhite CC, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critic Rev Toxicol. 2014;44(Suppl 4):1–80.

    CAS  CrossRef  Google Scholar 

  • Wills MR, Savory J. Aluminum and chronic renal failure: sources, absorption, transport, and toxicity. Crit Rev Clin Lab Sci. 1989;27(1):59–107.

    CAS  CrossRef  PubMed  Google Scholar 

  • Woodburn K, et al. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquat Toxicol. 2011;105(3–4):535–42.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wu Z, et al. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiology of Aging. 2012;33(1):199.e1–199.e12.

    CAS  CrossRef  Google Scholar 

  • Yellamma K, Saraswathamma S, Kumari BN. Cholinergic system under aluminium toxicity in rat brain. Toxicol Int. 2010;17(2):106.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol. 2001;88(4):159–67.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yokel RA, Allen DD, Meyer JJ. Studies of aluminum neurobehavioral toxicity in the intact mammal. Cell Mol Neurobiol. 1994;14(6):791–808.

    CAS  CrossRef  PubMed  Google Scholar 

  • Yokel RA, et al. Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single (26) Al exposure. Toxicolog Sci Off J Soc Toxicol. 2001;64(1):77–82.

    CAS  CrossRef  Google Scholar 

  • Yuan C-Y, Lee Y-J, Hsu G-S. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci. 2012;19(1):51.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yumoto S, et al. Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem. 2009;103(11):1579–84.

    CAS  CrossRef  PubMed  Google Scholar 

  • Zatta P, et al. The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull. 2003;62(1):15–28.

    CAS  CrossRef  PubMed  Google Scholar 

  • Zatta P, et al. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci. 2009;30(7):346–55.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Colomina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Colomina, M.T., Peris-Sampedro, F. (2017). Aluminum and Alzheimer’s Disease. In: Aschner, M., Costa, L. (eds) Neurotoxicity of Metals. Advances in Neurobiology, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-60189-2_9

Download citation