Skip to main content

Motor Systems III: The Cerebellum Movement and Major Fiber Pathways of the Cerebellum

  • Chapter
  • First Online:
Neuroanatomy for the Neuroscientist

Abstract

The role of the cerebellum is to integrate the sensory input from the periphery to provide smooth coordinated voluntary movements. It is a laminated cortical region with four deep nuclei (dentate, fastifigial, emboliform, and interpositus) and is attached to the brain stem by three peduncles- the superior, middle and inferior cerebellar peduncles. Superior cerebellar peduncle (brachium conjunctivum) is primarily efferent and projects via the dentate, fastigial, and interpositus nucleus to the red nucleus of the midbrain and onto thalamic motor nuclei which then project onto cerebrum. The middle cerebellar peduncle (brachium pontis) is the largest cerebellar peduncle and receives input primarily from the contralateral cerebrum via deep pontine nuclei whose fibers then project onto the neocerebellum. The inferior cerebellar peduncle provides sensory input via climbing fibers from the inferior olivary nucleus of the medulla and proprioceptive mossy fibers from the spinocerebellar tract and lateral cuneate nucleus and projects onto the paleocerebellum. The juxtarestiform body lies next to the inferior cerebellar peduncle and carries ipsilateral input from the vestibular nuclei onto the flocculonodular lobe of the archicerebellum and midline vermis which are important in posture and movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, the mossy fibers from the pontine and brain stem reticular nuclei apparently do not serve this collateral excitatory function.

  2. 2.

    Medulloblastomas may occasionally occur in adolescents and young adults.

  3. 3.

    Progressive multiple sclerosis may produce in the young or middle-aged adult severe involvement of white matter in the cerebellum and brain stem, resulting in severe truncal ataxia, in which the patient is ataxic in both the sitting and standing positions. Such cases almost always also manifest severe appendicular involvement, that is, the cerebellar syndrome is not selective.

  4. 4.

    In general chronic lesions of cerebellum in humans do not alter tone or tendon reflexes. Acute lesions of cerebellum resulting from hemorrhage or surgery may produce transient hypotonia (Diener and Dichgans 1992).

  5. 5.

    *As of April 2016, the number of identified loci has grown to 17. SCA 17 involves a CAG trinucleotide expansion.

Bibliography

  • Allin M, Matsumoto H, Santhouse AM, Nosarti C, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very preterm. Brain. 2001;124:60–6.

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Chevrie-Muller C, Roullet E, Bousser MG. Paravermal infarct and isolated cerebellar dysarthria. Ann Neurol. 1991a;30:211–3.

    Article  CAS  PubMed  Google Scholar 

  • Carrera RME, Mettler FA. Physiologic consequences following extensive removals of cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J Comp Neurol. 1947;87:167–288.

    Google Scholar 

  • Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal. Neurology. 1994;44:214–23.

    Article  CAS  PubMed  Google Scholar 

  • Diener HC, Dichgans J. Pathophysiology of cerebellar ataxias. Mov Disord. 1992;7:95–109.

    Article  CAS  PubMed  Google Scholar 

  • Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958.

    Google Scholar 

  • Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning inpatients with isolated degenerative cerebellar disease. Brain. 1999;122:87–97.

    Article  PubMed  Google Scholar 

  • Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992;115:155–78.

    Article  PubMed  Google Scholar 

  • Gilman S. Cerebellum and motor function. In: Asbury AK, McKhann GM, Mc Donald WI, editors. Diseases of the nervous system clinical neurobiology, vol. 1. Philadelphia: W.B. Saunders; 1986. p. 401–22.

    Google Scholar 

  • Holmes G. Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures. Lancet. 1922;1. 1177–1182, 1231–1237; 2:59–65, 111–115

    Google Scholar 

  • Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  • Ito M. The cerebellum and motor control. New York: Raven Press; 1984.

    Google Scholar 

  • Lechtenberg R. Ataxia and other cerebellar syndromes. In: Ankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 365–76.

    Google Scholar 

  • Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.

    Article  CAS  PubMed  Google Scholar 

  • Levinsohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children. Brain. 2000;123:1041–50.

    Article  Google Scholar 

  • Mettler FA, Orioli F. Studies on abnormal movement: cerebellar ataxia. Neurology. 1958;8:953–61.

    Article  CAS  PubMed  Google Scholar 

  • Noback, C.R. et al.: 1991. The Human Nervous System. 4th ed, Philadelphia. Lea & Febiger p. 282.

    Google Scholar 

  • Orioli FL, Mettler FA. Consequences of section of the simian restiform body. J Comp Neurol. 1958;109:195–204.

    Article  CAS  PubMed  Google Scholar 

  • Raymond JLS, Lisberger G, Mauk MD. The cerebellum: a neuronal learning machine? Science. 1996;272:1126–31.

    Article  CAS  PubMed  Google Scholar 

  • Riva D, Giogi C. The cerebellum contributes to higher functions during development. Brain. 2000;123:10411061.

    Article  Google Scholar 

  • Sanes JN, Dimitrov B, Hallett M. Motor learning in patients with cerebellar dysfunction. Brain. 1990;113:103–20.

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  • Snider. R.S.: 1950. Arch. Neurol. Psych. 64:204 (AMA).

    Google Scholar 

  • Thach WT. Cerebellar inputs to motor cortex. In: Ciba foundation symposium 132: motor areas of the cerebral cortex. Chichester: John Wiley; 1987. p. 201–20.

    Google Scholar 

  • Thach WT, Goodkin M, Keating JG. The cerebellum: the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:402–42.

    Article  Google Scholar 

  • Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.

    Article  PubMed  Google Scholar 

  • Wood NW, Harding AE. Cerebellar and spinocerebellar disorders. In: Bradley WG, Daroff RB, Fenichel GM, Marsden CD, editors. Neurology in clinical practice, vol. II. Boston: Butterworth Heinemann; 2000b. p. 1931–51.

    Google Scholar 

Cerebellum Degenerations and Systemic Disorders

  • Baloh RW, Yee RD, Honrubia V. Late cortical cerebellar atrophy: clinical and oculographic features. Brain. 1986;109:159–80.

    Article  PubMed  Google Scholar 

  • Berciano J. Olivopontocerebellar atrophy. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 131–51.

    Google Scholar 

  • Bhatia KP, Griggs RC, Ptacek LJ. Episodic movement disorders as channelopathies. Mov Disord. 2000;15:429–33.

    Article  CAS  Google Scholar 

  • Burk K, Abele M, Fetter M, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA 1, SCA 2 and SCA 3. Brain. 1996;119:1497–505.

    Article  PubMed  Google Scholar 

  • Fujigasaki H, Verma IC, Camuzat A, et al. SCA 12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol. 2001;49:117–21.

    Article  CAS  PubMed  Google Scholar 

  • Giunti P, Sabbadini G,. Sweeney G,MG, et al. The role of the SCA 2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia. Frequency, clinical and genetic correlates. Brain. 1998;121:459–67.

    Article  PubMed  Google Scholar 

  • Giunti P, Sweeney MG, Harding AE. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotides repeat expansion in families with autosomal dominant motor disorders including the drew family of walworth. Brain. 1995;118:1077–85.

    Article  PubMed  Google Scholar 

  • Greenfield JG. The spinocerebellar degenerations. Springfield, IL: Charles C Thomas; 1954.

    Google Scholar 

  • Thomas CC, Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intra-familial clustering of clinical features. Brain. 1981;104:589–620.

    Article  Google Scholar 

  • Klockgether T, Wullner U, Spauschus A, Evert B. The molecular biology of the autosomal- dominant cerebellar ataxias. Mov Disord. 2000;15:604–12.

    Article  CAS  PubMed  Google Scholar 

  • Mason WP, Graus F, Lang B, et al. Small cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert–Eaton myasthenia syndrome. Brain. 1997;120:1279–300.

    Article  PubMed  Google Scholar 

  • Rosen FS, Harris NL. A 30-year-old man with ataxia telangiectasia and dysarthria. Case records of the Massachusetts General Hospital: Case #2–1987. N Engl J Med. 1987;316:91–100.

    Article  Google Scholar 

  • Rosenberg RN. Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov Disord. 1992;7:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg RN. DNA-triplet repeats and neurologic disease. N Engl J Med. 1996;335:1222–4.

    Article  CAS  PubMed  Google Scholar 

  • Smitt PS, Kinoshita A, De Leeuw B, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med. 2000;342:21–7.

    Article  Google Scholar 

  • Sudarsky L, Corwin L, Dawson DM. Machado-Joseph disease in New England: clinical description and distinction from olivopontocerebellar atrophy. Mov Disord. 1992;7:204–8.

    Article  CAS  PubMed  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325:1831–6.

    Article  CAS  PubMed  Google Scholar 

  • Tolosa E, Berciano J. Choreas, hereditary and other ataxias and other movement disorders. Curr Opin Neurol Neurosurg. 1993;6:358–68.

    CAS  PubMed  Google Scholar 

  • Truman JT, Richardson EP Jr, Dvorak HF. Case records of the Massachusetts General Hospital, case 22-1975 (Ataxia-Telangiectasia). N Engl J Med. 1975;292:1231–7.

    Article  Google Scholar 

  • Victor M, Adams RD, Collins GH. The Wernicke Korsakoff syndrome and related neurological disorders due to alcoholism and malnutrition. 2nd ed. F. A. Davis: Philadelphia; 1989.

    Google Scholar 

  • Victor M, Adams RD, Mancall EL. A restricted form of cerebellar cortical degeneration occurring in alcoholic patients. Arch Neurol. 1959;1:579–688.

    Article  Google Scholar 

  • Yount WJ. IgG2 deficiency and ataxia telangiectas (editorial). N Engl J Med. 1981;306:541–3.

    Article  Google Scholar 

Vascular Syndromes of the Cerebellum

  • Amarenco P. The spectrum of cerebellar infarctions. Neurology. 1991;41:973–9.

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Hauw JJ. Cerebellar infarction in the territory of the superior cerebellar artery: a clinicopathologic study of 33 cases. Neurology. 1990a;40:1383–90.

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Hauw JJ. Cerebellar infarction in the territory of the anterior and inferior cerebellar artery. Brain. 1990b;113:139–55.

    Article  PubMed  Google Scholar 

  • Amarenco P, Kase CS, Rosengart A, et al. Very small (border zone) cerebellar infarcts. Distribution, causes, mechanisms and clinical features. Brain. 1993;116:161–86.

    Article  PubMed  Google Scholar 

  • Amarenco P, Roulellet E, Goujon C, et al. Infarction in the anterior rostral cerebellum (the territory of the lateral branch of the superior cerebellar artery). Neurology. 1991b;41:253–8.

    Article  CAS  PubMed  Google Scholar 

  • Caplan LR. Vertebrobasilar occlusive disease. In: Barnett HJM, et al., editors. Stroke: pathophysiology diagnosis and management, vol. 1; 1986. p. 549–619.

    Google Scholar 

  • Chaves CJ, Caplan LR, Chung CS, Amarenco P. Cerebellar infarcts. Curr Neurol. 1994;14:143–77.

    Google Scholar 

  • Chaves C, Pessin MS, Caplan LR, et al. Cerebellar hemorrhagic infarction. Neurology. 1996;46:346–9.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg J, Skubick D, Shenkin H. Acute hydrocephalus in cerebellar infarct and hemorrhage. Neurology. 1979;29:409–13.

    Article  CAS  PubMed  Google Scholar 

  • Heros R. Cerebellar infarction and hemorrhage. Stroke. 1982;13:106.

    Article  CAS  PubMed  Google Scholar 

  • Kase CS, Caplan LR. Hemorrhage affecting the brain stem and cerebellum. In: Barnett HJM, et al., editors. Stroke: pathophysiology diagnosis and management, vol. 1; 1986. p. 621–41.

    Google Scholar 

  • Kase CSB, Norrving O, Levine SR, et al. Cerebellar infarction. Clinical and anatomical observations in 66 patients. Stroke. 1993;24:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Skenkin HA, Zavala M. Cerebellar strokes: mortality, surgical indications and results of ventricular drainage. Lancet. 1982;11:429–31.

    Article  Google Scholar 

  • St. Louis EK, Wijdicks EF, Li H. Predicting neurologic deterioration in patients with cerebellar hematomas. Neurology. 1998;51:1364–9.

    Article  CAS  PubMed  Google Scholar 

  • Sypert GW, Alvord EC. Cerebellar infarction. A clinicopathological study. Arch Neurol. 1975;32:357–63.

    Article  CAS  PubMed  Google Scholar 

Cerebellum and Tremor

  • Colebatch JG, Britton T, Findley LJ, et al. The cerebellum is activated in essential tremor. Lancet. 1990;2:1028–30.

    Article  Google Scholar 

  • Deuschl G. Tremor: basic mechanisms and clinical aspects. Mov Disord. 1998;13(Suppl 3):1–149.

    Google Scholar 

  • Deuschl G, Wenzelburger R, Loffler K, et al. Essential tremor and cerebellar dysfunction. Clinical and kinematic analysis of intention tremor. Brain. 2000;123:1568–80.

    Article  PubMed  Google Scholar 

  • Dupuis MJM, Delwaide PJ, Boucguey D, Gonette RE. Homolateral disappearance of essential tremor after cerebellar stroke. Mov Disord. 1989;4:183–7.

    Article  CAS  PubMed  Google Scholar 

  • Elble RJ. Animal models of action tremor. Mov Disord. 1998;13(S3):35–9.

    Article  PubMed  Google Scholar 

  • Findley LJ. Tremors: differential diagnosis and pharmacology. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 243–61.

    Google Scholar 

  • Hallett M. Classification and treatment of tremor. JAMA. 1991;266:1115–7.

    Article  CAS  PubMed  Google Scholar 

  • Hallett M. Overview of human tremor physiology. Mov Disord. 1998;13(S3):43–8.

    Article  PubMed  Google Scholar 

  • Hua S, Reich SG, Zirh AT, et al. The role of the thalamus and basal ganglia in Parkinsonian tremor. Mov Disord. 1998;13(S3):40–2.

    Article  PubMed  Google Scholar 

Gait Disorders of the Elderly

  • Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965;273:117–26.

    Google Scholar 

  • Fisher CM. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982;32:1358–63.

    Article  CAS  PubMed  Google Scholar 

  • Fishman RA. Normal pressure hydrocephalus and arthritis (editorial). N Engl J Med. 1985;312:1255–6.

    Article  CAS  PubMed  Google Scholar 

  • Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol. 1987;44:21–3.

    Article  CAS  PubMed  Google Scholar 

  • Inzitar D, Diaz F, Fox A, et al. Vascular risk factors and leuko-araiosis. Arch Neurol. 1987;44:42–7.

    Article  Google Scholar 

  • Jacobs L, Conti D, Kinkel WR, Manning EJ. “Normal pressure” hydrocephalus: relationship of clinical and radiographic findings to improvement following shunt surgery. JAMA. 1976;235:510–2.

    Google Scholar 

  • Masdeu JC, Wolfson L, Lantos G, et al. Brain white matter changes in the elderly prone to falling. Arch Neurol. 1989;46:1292–6.

    Article  CAS  PubMed  Google Scholar 

  • Rasker JJ, Jansen ENH, Haan J, Oostrom J. Normal pressure hydrocephalus in rheumatic patients: a diagnostic pitfall. N Engl J Med. 1985;312:1239–41.

    Article  CAS  PubMed  Google Scholar 

  • Steingart A, Hackinski VC, Lau C, et al. Cognitive and neurological findings in subjects with diffuse white matter changes on computed topographic scan (leukoariosis). Arch Neurol. 1987;44:32–4.

    Article  CAS  PubMed  Google Scholar 

  • Sudarsky L. Current concepts-geriatrics: gait disorders in the elderly. N Engl J Med. 1990;322:1441–6.

    Article  CAS  PubMed  Google Scholar 

  • Sudarsky L, Ronthal M. Gait disorders among elderly patients: a survey study of 50 patients. Arch Neurol. 1983;40:740–3.

    Article  CAS  PubMed  Google Scholar 

  • Thompson PD, Marsden CD. Gait disorder of subcorttical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord. 1987;2:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Tinetti MD, Speechly M. Current concepts: geriatrics: prevention of falls among the elderly. N Engl J Med. 1989;320:1055–9.

    Article  CAS  PubMed  Google Scholar 

  • Tinetti MD, Speechly M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319:1701–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jacobson, S., Marcus, E.M., Pugsley, S. (2018). Motor Systems III: The Cerebellum Movement and Major Fiber Pathways of the Cerebellum. In: Neuroanatomy for the Neuroscientist. Springer, Cham. https://doi.org/10.1007/978-3-319-60187-8_13

Download citation

Publish with us

Policies and ethics