Skip to main content

Chemokine Receptor Oligomerization to Tweak Chemotactic Responses

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

  • 1240 Accesses

Abstract

Chemokine receptors guide cell migration by responding to local chemokine gradients during immune surveillance and inflammation. Similar to other G protein-coupled receptors, chemokine receptors can form oligomeric complexes that might have distinct pharmacological and biochemical properties as compared to their individual constituents. The majority of evidence for chemokine receptor oligomers came from transfected cells using tagged receptors to monitor their close proximity or physical association. However, translation of these observations to (patho)-physiological consequences is puzzling for the majority of chemokine receptor oligomers due to experimental limitations and challenges to distinguish oligomer- from downstream signaling-mediated crosstalk. Recent methodological advances allow in situ validation of chemokine receptor oligomers in native cells, disruption of oligomers, and detection of oligomer-mediated signaling. Chemokine receptor oligomerization modulates cell migration in (patho)-physiology and consequently offers novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

7TM:

seven transmembrane

α1A-AR:

α1A-adrenergic receptor

α1B-AR:

α1B-adrenergic receptor

α1D-AR:

α1D-adrenergic receptor

α2A-AR:

α2A-adrenergic receptor

α2B-AR:

α2B-adrenergic receptor

α2C-AR:

α2C-adrenergic receptor

ACKR:

atypical chemokine receptor

AIDS:

acquired immune deficiency syndrome

AngII:

angiotensin II

APC:

antigen-presenting cell

AT1R:

angiotensin II receptor type 1

β1-AR:

β1-adrenergic receptor

β2-AR:

β2-adrenergic receptor

BRET:

bioluminescence resonance energy transfer

BSMC:

bronchial smooth muscle cell

CB2:

cannabinoid receptor 2

CLL:

chronic lymphocytic leukemia

CODA-RET:

complemented donor-acceptor resonance energy transfer

CoIP:

co-immunoprecipitation

COPD:

chronic obstructive pulmonary disease

CRS1:

chemokine recognition site 1

CRS2:

chemokine recognition site 2

D2R:

dopamine receptor 2

DOR:

δ-opioid receptor

EBI2:

Epstein-Barr virus-induced receptor 2

EBV:

Epstein-Barr virus

ER:

endoplasmatic reticulum

FC:

functional complementation

FRET:

fluorescence resonance energy transfer

GDP:

guanosine diphosphate

GPCR:

G protein-coupled receptor

GPCR-HIT:

GPCR Heteromer Identification Technology

GRK:

G protein-coupled receptor kinase

GTP:

guanosine triphosphate

HHV:

human herpesvirus

HIV:

human immunodeficiency virus

IBD:

inflammatory bowel disease

IGF-1R:

insulin-like growth factor-1 receptor

IL:

intracellular loop

IS:

immunological synapse

IUPHAR:

International Union of Basic and Clinical Pharmacology

LE:

lymphatic endothelial cell

LN:

lymph nodes

MHC:

major histocompatibility complex

MoDC:

monocyte-derived dendritic cell

MOR:

μ-opioid receptor

NAM:

negative allosteric modulator

NBC:

negative binding cooperativity

NHERF1:

NA+/H+ exchanger regulatory factor-1

PFC:

protein fragment complementation

PGE2:

prostaglandin 2

PLA:

proximity ligation assay

PLC:

phospholipase C

PTX:

pertussis toxin

RET:

resonance energy transfer

Rluc:

Renilla luciferase

RTK:

receptor tyrosine kinase

S1PR1:

sphingosine-1-phosphate receptor 1

SNP:

single-nucleotide polymorphism

TM:

transmembrane

trFRET:

time-resolved fluorescence resonance energy transfer

VE:

vascular endothelial cell

VSMC:

vascular smooth muscle cell

References

  1. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.

    Article  CAS  PubMed  Google Scholar 

  2. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadière C, Farber JM, Graham GJ, et al. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66(1):1–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Proudfoot AEI, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A. 2003;100(4):1885–90.

    Google Scholar 

  4. Viola A, Luster AD. Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol. 2008;48:171–97.

    Article  CAS  PubMed  Google Scholar 

  5. Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11(9):597–606.

    Article  CAS  PubMed  Google Scholar 

  6. Vischer HF, Siderius M, Leurs R, Smit MJ. Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases? Nat Rev Drug Discov. 2014;13(2):123–39.

    Article  CAS  PubMed  Google Scholar 

  7. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

    Article  CAS  PubMed  Google Scholar 

  8. Salanga CL, Handel TM. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res. 2011;317(5):590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820.

    Article  CAS  PubMed  Google Scholar 

  10. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330(6007):1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, et al. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci USA. 2014;111(50):E5363–72.

    Google Scholar 

  12. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science. Am Assoc Adv Sci. 2015;347(6226):1261064.

    Google Scholar 

  13. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, et al. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science. Am Assoc Adv Sci. 2015;347(6226):1113–7.

    Google Scholar 

  14. Kniazeff J, Prezeau L, Rondard P, Pin J-P, Goudet C. Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther. 2011;130(1):9–25.

    Article  CAS  PubMed  Google Scholar 

  15. Moustaine El D, Granier S, Doumazane E, Scholler P, Rahmeh R, Bron P, et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci USA. 2012;109(40):16342–7.

    Google Scholar 

  16. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem. 2007;282(20):14875–81.

    Article  CAS  PubMed  Google Scholar 

  17. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang C-C, Tesmer JJG, et al. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem. Am Soc Biochem Mol Biol. 2011;286(2):1420–8.

    Google Scholar 

  18. Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV. Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA. 2007;104:3125–8.

    Google Scholar 

  19. White JF, Grodnitzky J, Louis JM, Trinh LB, Shiloach J, Gutierrez J, et al. Dimerization of the class A G protein-coupled neurotensin receptor NTS1 alters G protein interaction. Proc Natl Acad Sci U S A. 2007;104(29):12199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A. 2007;104(18):7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whorton MR, Jastrzebska B, Park PS-H, Fotiadis D, Engel A, Palczewski K, et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem. 2008;283(7):4387–94.

    Article  CAS  PubMed  Google Scholar 

  22. Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK. Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem. 2009;284(39):26732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arcemisbéhère L, Sen T, Boudier L, Balestre M-N, Gaibelet G, Detouillon E, et al. Leukotriene BLT2 receptor monomers activate the G(i2) GTP-binding protein more efficiently than dimers. J Biol Chem. 2010;285(9):6337–47.

    Article  PubMed  CAS  Google Scholar 

  24. Tsukamoto H, Sinha A, Dewitt M, Farrens DL. Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J Mol Biol. 2010;399(3):501–11.

    Article  CAS  PubMed  Google Scholar 

  25. Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KDG, Devi LA. G protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol. 2016;56:403–25.

    Article  CAS  PubMed  Google Scholar 

  26. Vischer HF, Castro M, Pin J-P. G protein-coupled receptor multimers: a question still open despite the use of novel approaches. Mol Pharmacol. Am Soc Pharmacol Exp Ther. 2015;88(3):561–71.

    Google Scholar 

  27. Vischer HF, Watts AO, Nijmeijer S, Leurs R. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand? Br J Pharmacol. 2011;163(2):246–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weibrecht I, Leuchowius K-J, Clausson C-M, Conze T, Jarvius M, Howell WM, et al. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics. 2010;7(3):401–9.

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, et al. Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci USA. 2015;112(13):E1659–68.

    Google Scholar 

  30. Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, et al. New insights into mechanisms and functions of chemokine (C-X-C motif) receptor 4 heteromerization in vascular smooth muscle. Int J Mol Sci. 2016;17(6):971.

    Article  PubMed Central  Google Scholar 

  31. Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, et al. Simultaneous activation of induced heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) reveal a mechanism for regulation of tumor progression. J Biol Chem Am Soc Biochem Mol Biol. 2016;291:jbc.M115.712661.

    Google Scholar 

  32. Hauser MA, Schaeuble K, Kindinger I, Impellizzieri D, Krueger WA, Hauck CR, et al. Inflammation-induced CCR7 oligomers form scaffolds to integrate distinct signaling pathways for efficient cell migration. Immunity (Elsevier). 2016;44(1):59–72.

    Google Scholar 

  33. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6(8):587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fernández-Dueñas V, Taura JJ, Cottet M, Gómez-Soler M, López-Cano M, Ledent C, et al. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech (The Company of Biologists Limited). 2015;8(1):57–63.

    Google Scholar 

  35. Mujić-Delić A, de Wit RH, Verkaar F, Smit MJ. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends Pharmacol Sci (Elsevier). 2014;35(5):247–255.

    Google Scholar 

  36. Inglese J, Samama P, Patel S, Burbaum J, Stroke IL, Appell KC. Chemokine receptor-ligand interactions measured using time-resolved fluorescence. Biochemistry. 1998;37(8):2372–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, et al. A fluorescent ligand-binding alternative using tag-lite® technology. J Biomol Screen. 2010;15(10):1248–59.

    Article  CAS  PubMed  Google Scholar 

  38. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289(5480):739–45.

    Article  CAS  PubMed  Google Scholar 

  39. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science. 2013;341(6152):1387–90.

    Article  CAS  PubMed  Google Scholar 

  40. Hernanz-Falcón P, Rodríguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, et al. Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol. 2004;5(2):216–23.

    Article  PubMed  CAS  Google Scholar 

  41. Hüttenrauch F, Pollok-Kopp B, Oppermann M. G protein-coupled receptor kinases promote phosphorylation and beta-arrestin-mediated internalization of CCR5 homo- and hetero-oligomers. J Biol Chem. 2005;280(45):37503–15.

    Article  PubMed  CAS  Google Scholar 

  42. Hurevich M, Ratner-Hurevich M, Tal-Gan Y, Shalev DE, Ben-Sasson SZ, Gilon C. Backbone cyclic helix mimetic of chemokine (C-C motif) receptor 2: a rational approach for inhibiting dimerization of G protein-coupled receptors. Bioorg Med Chem. 2013;21(13):3958–66.

    Article  CAS  PubMed  Google Scholar 

  43. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, de Ana AM, Martínez-A C. Chemokine control of HIV-1 infection. Nature. 1999;400(6746):723–4.

    Article  CAS  PubMed  Google Scholar 

  44. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, et al. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem. 2005;280(11):9895–903.

    Article  CAS  PubMed  Google Scholar 

  45. Isik N, Hereld D, Jin T. Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors. PLoS ONE. 2008;3(10):e3424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang J, He L, Combs CA, Roderiquez G, Norcross MA. Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther. 2006;5(10):2474–83.

    Article  CAS  PubMed  Google Scholar 

  47. Armando S, Quoyer J, Lukashova V, Maiga A, Percherancier Y, Heveker N, et al. The chemokine CXC4 and CC2 receptors form homo- and heterooligomers that can engage their signaling G-protein effectors and βarrestin. FASEB J. 2014;28(10):4509–23.

    Article  CAS  PubMed  Google Scholar 

  48. Nijmeijer S, Leurs R, Smit MJ, Vischer HF. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem. 2010;285(38):29632–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, et al. Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem. Am Soc Biochem Mol Biol. 2009;284(45):31270–9.

    Google Scholar 

  50. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron. 2000;27(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  51. Wilson S, Wilkinson G, Milligan G. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem. 2005;280(31):28663–74.

    Article  CAS  PubMed  Google Scholar 

  52. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbé-Jullié C, et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem. 2002;277(38):34666–73.

    Article  CAS  PubMed  Google Scholar 

  53. Dorsch S, Klotz K-N, Engelhardt S, Lohse MJ, Bünemann M. Analysis of receptor oligomerization by FRAP microscopy. Nat Methods. 2009;6(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  54. Fonseca JM, Lambert NA. Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol. 2009;75(6):1296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A. 2010;107(6):2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gavalas A, Lan T-H, Liu Q, Corrêa IR, Javitch JA, Lambert NA. Segregation of family A G protein-coupled receptor protomers in the plasma membrane. Mol Pharmacol. 2013;84(3):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 2003;278(5):3378–3385.

    Google Scholar 

  58. Toth PT, Ren D, Miller RJ. Regulation of CXCR4 receptor dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther. 2004;310(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  59. Sohy D, Parmentier M, Springael J-Y. Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem. 2007;282(41):30062–9.

    Article  CAS  PubMed  Google Scholar 

  60. Luker KE, Gupta M, Luker GD. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J. 2009;23(3):823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009 Jun 11;113(24):6085–93.

    Article  CAS  PubMed  Google Scholar 

  62. Rodríguez-Frade JM, Vila-Coro AJ, de Ana AM, Albar JP, Martínez-A C, Mellado M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A 1999;96(7):3628–3633.

    Google Scholar 

  63. Rodríguez-Frade JM, del Real G, Serrano A, Hernanz-Falcón P, Soriano SF, Vila-Coro AJ, et al. Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J. 2004;23(1):66–76.

    Article  PubMed  CAS  Google Scholar 

  64. Vila-Coro AJ, Mellado M, de Martín Ana A, Lucas P, del Real G, Martínez-A C, et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci U S A. 2000;97(7):3388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vila-Coro AJ, Rodríguez-Frade JM, de Martín Ana A, Moreno-Ortíz MC, Martínez-A C, Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999;13(13):1699–710.

    CAS  PubMed  Google Scholar 

  66. Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Fernández S, de Martín Ana A, Jones DR, et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001;20(10):2497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. El-Asmar L, Springael J-Y, Ballet S, Andrieu EU, Vassart G, Parmentier M. Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol. 2005;67(2):460–9.

    Article  CAS  PubMed  Google Scholar 

  68. Gillies K, Wertman J, Charette N, Dupré DJ. Anterograde trafficking of CXCR4 and CCR2 receptors in a prostate cancer cell line. Cell Physiol Biochem. 2013;32(1):74–85.

    Article  CAS  PubMed  Google Scholar 

  69. Wang J, Alvarez R, Roderiquez G, Guan E, Norcross MA. Constitutive association of cell surface CCR5 and CXCR4 in the presence of CD4. J Cell Biochem. 2004;93(4):753–60.

    Article  CAS  PubMed  Google Scholar 

  70. Springael J-Y, Urizar E, Parmentier M. Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev. 2005;16(6):611–23.

    Article  CAS  PubMed  Google Scholar 

  71. Martínez-Muñoz L, Lucas P, Navarro G, Checa AI, Franco R, Martínez-A C, et al. Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. J Immunol. Am Assoc Immunol. 2009;183(11):7337–46.

    Google Scholar 

  72. Pello OM, Martínez-Muñoz L, Parrillas V, Serrano A, Rodríguez-Frade JM, Toro MJ, et al. Ligand stabilization of CXCR4/δ-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol (WILEY-VCH Verlag). 2008;38(2):537–549.

    Google Scholar 

  73. Lambert NA, Javitch JA. CrossTalk opposing view: weighing the evidence for class A GPCR dimers, the jury is still out. J Physiol Lond. 2014;592(Pt 12):2443–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pin J-P, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA, et al. International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev. 2007;59(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  75. Prezeau L, Rives M-L, Comps-Agrar L, Maurel D, Kniazeff J, Pin J-P. Functional crosstalk between GPCRs: with or without oligomerization. Curr Opin Pharmacol. 2010;10(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  76. Vilardaga J-P, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ. Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat Chem Biol. 2008;4(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  77. Xue L, Rovira X, Scholler P, Zhao H, Liu J, Pin J-P, et al. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol. 2015;11(2):134–40.

    Article  CAS  PubMed  Google Scholar 

  78. Birdsall NJM, Class A. GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci. 2010;31(11):499–508.

    Article  CAS  PubMed  Google Scholar 

  79. Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66(2):413–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Springael J-Y, Le Minh PN, Urizar E, Costagliola S, Vassart G, Parmentier M. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol. 2006;69(5):1652–61.

    Article  CAS  PubMed  Google Scholar 

  81. Watts A, van Lipzig M, Jaeger W, Seeber R, van Zwam M, Vinet J, et al. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. Br J Pharmacol. 2013;168(7):1662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vinet J, van Zwam M, Dijkstra I, Brouwer N, van Weering H, Watts A, et al. Inhibition of CXCR3-mediated chemotaxis by the human chemokine receptor-like protein CCX-CKR. Br J Pharmacol. 2013;168(6):1375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Poorter C, Baertsoen K, Lannoy V, Parmentier M, Springael J-Y. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7. PLoS ONE. 2013;8(2):e58075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chabre M, Deterre P, Antonny B. The apparent cooperativity of some GPCRs does not necessarily imply dimerization. Trends Pharmacol Sci. 2009;30(4):182–7.

    Article  CAS  PubMed  Google Scholar 

  85. Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev. 2010;62(4):701–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 2013;12(8):630–44.

    Article  CAS  PubMed  Google Scholar 

  87. Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, et al. Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol Pharmacol. 2001;59(4):707–15.

    CAS  PubMed  Google Scholar 

  88. Scholten D, Canals M, Wijtmans M, de Munnik S, Nguyen P, Verzijl D, et al. Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3. Br J Pharmacol. 2012;166(3):898–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen L-Y. Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol. 2004;483(2–3):175–86.

    Article  CAS  PubMed  Google Scholar 

  90. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci U S A. 2008;105(29):10101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parenty G, Appelbe S, Milligan G. CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor heterodimer. Biochem J. 2008;412(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ganghammer S, Gutjahr J, Hutterer E, Krenn PW, Pucher S, Zelle-Rieser C, et al. Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica. 2016;101(3):e99–e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Giegold O, Ogrissek N, Richter C, Schröder M, Herrero San Juan M, Pfeilschifter JM, et al. CXCL9 causes heterologous desensitization of CXCL12-mediated memory T lymphocyte activation. J Immunol. Am Assoc Immunol. 2013;190(7):3696–705.

    Google Scholar 

  94. See HB, Seeber RM, Kocan M, Eidne KA, Pfleger KDG. Application of G protein-coupled receptor-heteromer identification technology to monitor β-arrestin recruitment to G protein-coupled receptor heteromers. Assay Drug Dev Technol. 2011;9(1):21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mustafa S, See HB, Seeber RM, Armstrong SP, White CW, Ventura S, et al. Identification and profiling of novel α1A-adrenoceptor-CXC chemokine receptor 2 heteromer. J Biol Chem. 2012;287(16):12952–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ayoub MA, Zhang Y, Kelly RS, See HB, Johnstone EKM, McCall EA, et al. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS ONE (Public Library of Science). 2015;10(3):e0119803.

    Google Scholar 

  97. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem. 1997;272(49):30603–6.

    Article  CAS  PubMed  Google Scholar 

  98. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5.

    Article  CAS  PubMed  Google Scholar 

  99. Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, et al. Role for CCR5Delta32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol. 2004;78(5):2277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Venkatesan S, Petrovic A, Van Ryk DI, Locati M, Weissman D, Murphy PM. Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem. Am Soc Biochem Mol Biol. 2002;277(3):2287–301.

    Google Scholar 

  101. Wang G, Wu G. Small GTPase regulation of GPCR anterograde trafficking. Trends Pharmacol Sci (Elsevier). 2012;33(1):28–34.

    Google Scholar 

  102. Charette N, Holland P, Frazer J, Allen H, Dupré DJ. Dependence on different Rab GTPases for the trafficking of CXCR4 and CCR5 homo or heterodimers between the endoplasmic reticulum and plasma membrane in Jurkat cells. Cell Signal. 2011;23(11):1738–49.

    Article  CAS  PubMed  Google Scholar 

  103. Achour L, Scott MGH, Shirvani H, Thuret A, Bismuth G, Labbé-Jullié C, et al. CD4-CCR5 interaction in intracellular compartments contributes to receptor expression at the cell surface. Blood (American Society of Hematology). 2009;113(9):1938–1947.

    Google Scholar 

  104. Martínez-Muñoz L, Barroso R, Dyrhaug SY, Navarro G, Lucas P, Soriano SF, et al. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci USA. Natl Acad Sci. 2014;111(19):E1960–9.

    Google Scholar 

  105. Hammad MM, Kuang Y-Q, Yan R, Allen H, Dupré DJ. Na+/H+ exchanger regulatory factor-1 is involved in chemokine receptor homodimer CCR5 internalization and signal transduction but does not affect CXCR4 homodimer or CXCR4-CCR5 heterodimer. J Biol Chem. 2010;285(45):34653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Molon B, Gri G, Bettella M, Gómez-Moutón C, Lanzavecchia A, Martínez-A C, et al. T cell costimulation by chemokine receptors. Nat Immunol. 2005;6(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  107. Hennenberg M, Schlenker B, Roosen A, Strittmatter F, Walther S, Stief C, et al. β-arrestin-2 is expressed in human prostate smooth muscle and a binding partner of α1A-adrenoceptors. World J Urol (Springer-Verlag). 2011;29(2):157–163.

    Google Scholar 

  108. Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J, et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol (Nature Publishing Group). 2009;10(1):101–108.

    Google Scholar 

  109. Chakera A, Seeber RM, John AE, Eidne KA, Greaves DR. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol Pharmacol. 2008;73(5):1362–70.

    Article  CAS  PubMed  Google Scholar 

  110. Sánchez-Martín L, Sánchez-Mateos P, Cabañas C. CXCR7 impact on CXCL12 biology and disease. Trends Mol Med. 2013;19(1):12–22.

    Article  PubMed  CAS  Google Scholar 

  111. Sierro F, Biben C, Martínez-Muñoz L, Mellado M, Ransohoff RM, Li M, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A. 2007;104(37):14759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem. 2011;286(37):32188–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Coggins NL, Trakimas D, Chang SL, Ehrlich A, Ray P, Luker KE, et al. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS ONE (Public Library of Science). 2014;9(6):e98328.

    Google Scholar 

  114. Beisser PS, Verzijl D, Gruijthuijsen YK, Beuken E, Smit MJ, Leurs R, et al. The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase. J Virol. 2005;79(1):441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zuo J, Currin A, Griffin BD, Shannon-Lowe C, Thomas WA, Ressing ME, et al. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 2009;5(1):e1000255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Vischer HF, Nijmeijer S, Smit MJ, Leurs R. Viral hijacking of human receptors through heterodimerization. Biochem Biophys Res Commun. 2008;377(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  117. Michaelis M, Baumgarten P, Mittelbronn M, Driever PH, Doerr HW, Cinatl J. Oncomodulation by human cytomegalovirus: novel clinical findings open new roads. Med Microbiol Immunol (Springer-Verlag). 2011 Feb;200(1):1–5.

    Google Scholar 

  118. Streblow DN, Dumortier J, Moses AV, Orloff SL, Nelson JA. Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol. 2008;325:397–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, et al. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal. 2010;3(133):ra58.

    Google Scholar 

  120. Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, et al. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 2011;71(21):6643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell. 1999;99(5):511–20.

    Article  CAS  PubMed  Google Scholar 

  122. Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, et al. Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem. 2003;278(50):50010–23.

    Article  CAS  PubMed  Google Scholar 

  123. Lares AP, Tu CC, Spencer JV. The human cytomegalovirus US27 gene product enhances cell proliferation and alters cellular gene expression. Virus Res. 2013;176(1–2):312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M. Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol. 2011;82(6):610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wagner S, Arnold F, Wu Z, Schubert A, Walliser C, Tadagaki K, et al. The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch Virol. 2012;157(5):935–49.

    Article  CAS  PubMed  Google Scholar 

  126. Tadagaki K, Tudor D, Gbahou F, Tschische P, Waldhoer M, Bomsel M, et al. Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood. 2012;119(21):4908–18.

    Article  CAS  PubMed  Google Scholar 

  127. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR. Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem. 2005;280(48):39701–8.

    Article  CAS  PubMed  Google Scholar 

  128. Salazar N, Muñoz D, Kallifatidis G, Singh RK, Jordà M, Lokeshwar BL. The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Mol Cancer BioMed Central. 2014;13(1):198.

    Article  CAS  Google Scholar 

  129. Catrina S-B, Lewitt M, Massambu C, Dricu A, Grünler J, Axelson M, et al. Insulin-like growth factor-I receptor activity is essential for Kaposi’s sarcoma growth and survival. Br J Cancer. 2005;92(8):1467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Munnik SM, van der Lee R, Velders DM, van Offenbeek J, Smits-de Vries L, Leurs R, et al. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R. Cell Signal. 2016;28(6):595–605.

    Article  PubMed  CAS  Google Scholar 

  131. Limatola C, Di Bartolomeo S, Trettel F, Lauro C, Ciotti MT, Mercanti D, et al. Expression of AMPA-type glutamate receptors in HEK cells and cerebellar granule neurons impairs CXCL2-mediated chemotaxis. J Neuroimmunol. 2003;134(1–2):61–71.

    Article  CAS  PubMed  Google Scholar 

  132. Bach HH, Wong YM, Tripathi A, Nevins AM, Gamelli RL, Volkman BF, et al. Chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3 regulate vascular α1-adrenergic receptor function. Mol Med. 2014;20(1):435–47.

    PubMed  PubMed Central  Google Scholar 

  133. Barroso R, Martínez-Muñoz L, Barrondo S, Vega B, Holgado BL, Lucas P, et al. EBI2 regulates CXCL13-mediated responses by heterodimerization with CXCR5. FASEB J (Federation of American Societies for Experimental Biology). 2012;26(12):4841–54.

    Google Scholar 

  134. Sanders VM. The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain Behav Immun. 2012;26(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  135. Nakai A, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J Exp Med(Rockefeller Univ Press). 2014;211(13):2583–98.

    Google Scholar 

  136. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta-1-adrenergic-receptor and Beta-2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium - coupling of both receptor subtypes to muscle-contraction and selective Beta-1-receptor down-regulation in heart-failure. Circ Res. 1986;59(3):297–309.

    Article  CAS  PubMed  Google Scholar 

  137. Damås JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res. 2000;47(4):778–87.

    Article  PubMed  Google Scholar 

  138. LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, et al. β2-adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol. 2010;56(5):548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hiller C, Kühhorn J, Gmeiner P. Class A G-protein-coupled receptor (GPCR) dimers and bivalent ligands. J Med Chem. 2013;56(17):6542–59.

    Article  CAS  PubMed  Google Scholar 

  140. Mélik Parsadaniantz S, Rivat C, Rostène W, Réaux-Le GA. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat Rev Neurosci. 2015;16(2):69–78.

    Article  PubMed  CAS  Google Scholar 

  141. Akgün E, Javed MI, Lunzer MM, Powers MD, Sham YY, Watanabe Y, et al. Inhibition of inflammatory and neuropathic pain by targeting a Mu opioid receptor/chemokine Receptor5 heteromer (MOR-CCR5). J Med Chem. 2015;58(21):8647–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol. 2011;6(4):442–65.

    Article  PubMed  PubMed Central  Google Scholar 

  143. El-Hage N, Dever SM, Podhaizer EM, Arnatt CK, Zhang Y, Hauser KF. A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-μ-opioid receptor interactions between human astroglia and microglia. AIDS. 2013;27(14):2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yuan Y, Arnatt CK, Li G, Haney KM, Ding D, Jacob JC, et al. Design and synthesis of a bivalent ligand to explore the putative heterodimerization of the mu opioid receptor and the chemokine receptor CCR5. Org Biomol Chem (The Royal Society of Chemistry). 2012;10(13):2633–46.

    Google Scholar 

  145. Yuan Y, Arnatt CK, El-Hage N, Dever SM, Jacob JC, Selley DE, et al. A bivalent ligand targeting the putative Mu opioid receptor and Chemokine Receptor CCR5 heterodimers: binding affinity versus functional activities. Med Chem Commun (The Royal Society of Chemistry). 2013;4(5):847–51.

    Google Scholar 

  146. Tanaka T, Nomura W, Narumi T, Masuda A, Tamamura H. Bivalent ligands of CXCR4 with rigid linkers for elucidation of the dimerization state in cells. J Am Chem Soc. 2010;132(45):15899–901.

    Article  CAS  PubMed  Google Scholar 

  147. Nomura W, Koseki T, Ohashi N, Mizuguchi T, Tamamura H. Trivalent ligands for CXCR4 bearing polyproline linkers show specific recognition for cells with increased CXCR4 expression. Org Biomol Chem (The Royal Society of Chemistry). 2015;13(32):8734–9.

    Google Scholar 

  148. Choi W-T, Kumar S, Madani N, Han X, Tian S, Dong C-Z, et al. A novel synthetic bivalent ligand to probe chemokine receptor CXCR4 dimerization and inhibit HIV-1 entry. Biochemistry. 2012;51(36):7078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bradley ME, Dombrecht B, Manini J, Willis J, Vlerick D, De Taeye S, et al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol Pharmacol (Am Soc Pharmacol Exp Ther). 2015;87(2):251–62.

    Google Scholar 

  150. Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A. 2010;107(47):20565–70.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Maussang D, Mujić-Delić A, Descamps FJ, Stortelers C, Vanlandschoot P, Stigter-van Walsum M, et al. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem. 2013;288(41):29562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic Regulation of Quaternary Organization of the M1 muscarinic receptor by subtype-selective antagonist drugs. J Biol Chem (American Society for Biochemistry and Molecular Biology). 2016;291(25):13132–46.

    Google Scholar 

  153. Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R, et al. New nomenclature for atypical chemokine receptors. Nat Immunol. 2014;15(3):207–8.

    Article  CAS  PubMed  Google Scholar 

  154. Scholten D, Canals M, Maussang D, Roumen L, Smit M, Wijtmans M, et al. Pharmacological modulation of chemokine receptor function. Br J Pharmacol. 2012;165(6):1617–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Steel E, Murray VL, Liu AP. Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. PLoS ONE. 2014;9(4):e93646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Blanpain C, Vanderwinden J-M, Cihak J, Wittamer V, Le Poul E, Issafras H, et al. Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies. Mol Biol Cell. 2002;13(2):723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J. Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci. 2009;100(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  158. Suzuki S, Chuang LF, Yau P, Doi RH, Chuang RY. Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res. 2002;280(2):192–200.

    Article  CAS  PubMed  Google Scholar 

  159. Muñoz LM, Lucas P, Holgado BL, Barroso R, Vega B, Rodríguez-Frade JM, et al. Receptor oligomerization: a pivotal mechanism for regulating chemokine function. Pharmacol Ther. 2011;131(3):351–8.

    Article  PubMed  CAS  Google Scholar 

  160. Trettel F, Di Bartolomeo S, Lauro C, Catalano M, Ciotti MT, Limatola C. Ligand-independent CXCR2 dimerization. J Biol Chem. 2003;278(42):40980–8.

    Article  CAS  PubMed  Google Scholar 

  161. Nomura W, Aikawa H, Taketomi S, Tanabe M, Mizuguchi T, Tamamura H. Exploration of labeling by near infrared dyes of the polyproline linker for bivalent-type CXCR4 ligands. Bioorg Med Chem. 2015;23(21):6967–73.

    Article  CAS  PubMed  Google Scholar 

  162. Lagane B, Chow KYC, Balabanian K, Levoye A, Harriague J, Planchenault T, et al. CXCR4 dimerization and beta-arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood. 2008;112(1):34–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. Vischer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vischer, H.F. (2017). Chemokine Receptor Oligomerization to Tweak Chemotactic Responses. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_9

Download citation

Publish with us

Policies and ethics