Skip to main content

Heteroreceptor Complexes Implicated in Parkinson’s Disease

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

Heteromerization alters GPCR recognition, G-protein activation, receptor signaling and trafficking, thus changing receptor protomer pharmacology and function. This review deals mainly with the A2AR-D2R and A1R-D1R heteroreceptor complexes, their balance with dopamine and adenosine isoreceptor complexes and their role in Parkinson’s disease and its treatment. The major technique used for the visualization of the heteroreceptor complexes in the brain was the proximity ligation assay. A1R-D1R and putative A1R-D1R-D3R heteroreceptor complexes appear to exist in the direct pathway. Upon agonist activation the A1R protomer exerts a brake on the D1R protomer signaling of these complexes reducing the activity of the direct pathway with reduction of movement initiation. D1R-NMDAR and D1R-H3R-NMDAR heteroreceptor complexes in the striatal glutamate synapses integrate synaptic and volume transmission, where in the former complexes the D1R protomer enhances NMDAR signaling with enhancement of movements. A2AR-D2R and A2AR-D2R-mGlu5R heteroreceptor complexes with antagonistic receptor-receptor interactions exist in the dorsal striato-pallidal GABA neurons mediating motor inhibition. The A2AR and mGlu5R antagonists synergize to increase D2R protomer signaling by removing the A2AR and mGlu5R brakes on the D2R protomer signaling and heterobivalent compounds built of A2AR and mGlu5R antagonists may specifically and substantially remove these brakes reducing motor inhibition with development of antiparkinson actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, et al. Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 1983;18:165–79. PubMed.

    Google Scholar 

  2. Zoli M, Agnati LF, Hedlund PB, Li XM, Ferre S, Fuxe K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol. 1993;7(3–4):293–334. PubMed.

    Google Scholar 

  3. Fuxe K, Ferre S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 1998;26(2–3):258–73. PubMed.

    Google Scholar 

  4. Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003;55(3):509–50. PubMed.

    Google Scholar 

  5. Franco R. G-protein-coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. Br J Pharmacol. 2009;158(1):23–31. PubMed PMCID: PMC2795242.

    Google Scholar 

  6. Fuxe K, Borroto-Escuela DO. Heteroreceptor complexes and their allosteric receptor-receptor interactions as a Novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology. 2016;41(1):380–2. PubMed PMCID: 4677137.

    Google Scholar 

  7. Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philosoph Transac Royal Soc London Ser B Biolog Sci. 2015;370(1672). PubMed PMCID: 4455752.

    Google Scholar 

  8. Borroto-Escuela DO, Brito I, Di Palma M, Jiménez-Beristain A, Narváez M, Corrales F, et al. On the role of the balance of GPCR homo/heteroreceptor complexes in the brain. J Adv Neuroscie Res. 2015;2(1):36–44.

    Article  Google Scholar 

  9. Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO. Dopamine heteroreceptor complexes as therapeutic targets in Parkinson's disease. Expert Opin Ther Targets 2015;19(3):377–98. PubMed.

    Google Scholar 

  10. Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Purinergic signaling in Parkinson’s disease. Rel Treat Neuropharmacol 2016;104:161–8. PubMed.

    Google Scholar 

  11. Ward RJ, Pediani JD, Godin AG, Milligan G. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis. J Biol Chem. 2015;290(20):12844–57. PubMed PMCID: PMC4432300.

    Google Scholar 

  12. Fuxe K, Agnati LF, Borroto-Escuela DO. The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 2014;14(7):719–21. PubMed.

    Google Scholar 

  13. Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neurosci Discov. 2014 2014;2(1). en.

    Google Scholar 

  14. Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, et al. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci. 2014;15(5):8570–90. PubMed PMCID: PMC4057749.

    Google Scholar 

  15. Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson's disease. Mov Disord 2007;22(14):1990–2017. PubMed.

    Google Scholar 

  16. Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007;92(1–2):210–217. PubMed.

    Google Scholar 

  17. Fuxe K, Marcellino D, Borroto-Escuela DO, Guescini M, Fernandez-Duenas V, Tanganelli S, et al. Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010;16(3):e18–e42. PubMed.

    Google Scholar 

  18. Franco R, Casado V, Cortes A, Perez-Capote K, Mallol J, Canela E, et al. Novel pharmacological targets based on receptor heteromers. Brain Res Rev 2008;58(2):475–482. PubMed.

    Google Scholar 

  19. Moreno E, Hoffmann H, Gonzalez-Sepulveda M, Navarro G, Casado V, Cortes A, et al. Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem. 2011;286(7):5846–54. PubMed PMCID: PMC3037697.

    Google Scholar 

  20. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, et al. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci. 2008;11(12):1402–9. PubMed PMCID: PMC2779562.

    Google Scholar 

  21. Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO, et al. Fibroblast growth factor receptor 1-5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 2012;71(1):84–91. PubMed.

    Google Scholar 

  22. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO, et al. G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 2013;521:281–294. PubMed.

    Google Scholar 

  23. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, et al. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques. 2011;51(2):111–8. PubMed PMCID: PMC3642203.

    Google Scholar 

  24. Borroto-Escuela DO, Hagman B, Woolfenden M, Pinton L, Jiménez-Beristain A, Oflijan J, et al. In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. Neuromethods: Humana Press Inc.; 2016. p. 109–24.

    Google Scholar 

  25. Franco R, Lluis C, Canela EI, Mallol J, Agnati L, Casado V, et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm (Vienna) 2007;114(1):93–104. PubMed.

    Google Scholar 

  26. Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A. 2000;97(15):8606–11. PubMed PMCID: PMC26995.

    Google Scholar 

  27. Toda S, Alguacil LF, Kalivas PW. Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 2003;87(6):1478–1484. PubMed.

    Google Scholar 

  28. Popoli P, Gimenez-Llort L, Pezzola A, Reggio R, Martinez E, Fuxe K, et al. Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 1996;218(3):209–213. PubMed.

    Google Scholar 

  29. Rimondini R, Ferre S, Gimenez-Llort L, Ogren SO, Fuxe K. Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 1998;347(2–3):153–158. PubMed.

    Google Scholar 

  30. Ferre S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, Scotti de Carolis A, et al. Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 1994;6(1):73–76. PubMed.

    Google Scholar 

  31. Marcellino D, Ferre S, Casado V, Cortes A, Le Foll B, Mazzola C, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem. 2008;283(38):26016–25. PubMed PMCID: PMC2533781.

    Google Scholar 

  32. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 2003;9(6):762–767. PubMed.

    Google Scholar 

  33. Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, et al. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 2008;58(2):415–452. PubMed.

    Google Scholar 

  34. Farre D, Munoz A, Moreno E, Reyes-Resina I, Canet-Pons J, Dopeso-Reyes IG, et al. Stronger dopamine D1 receptor-mediated neurotransmission in dyskinesia. Mol Neurobiol 2015;52(3):1408–1420. PubMed.

    Google Scholar 

  35. Franco R, Casado-Anguera V, Munoz A, Petrovic M, Navarro G, Moreno E, et al. Hints on the lateralization of dopamine binding to D receptors in rat striatum. Mol Neurobiol. 2015, October 9. PubMed.

    Google Scholar 

  36. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111(2):219–230. PubMed.

    Google Scholar 

  37. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278(22):20196–20202. PubMed.

    Google Scholar 

  38. Fiorentini C, Savoia P, Savoldi D, Missale C. Receptor heteromers in Parkinson's disease and L-DOPA-induced dyskinesia. CNS Neurol Disord Drug Targets 2013;12(8):1101–1113. PubMed.

    Google Scholar 

  39. Zhang J, Xu TX, Hallett PJ, Watanabe M, Grant SG, Isacson O, et al. PSD-95 uncouples dopamine-glutamate interaction in the D1/PSD-95/NMDA receptor complex. J Neurosci. 2009;29(9):2948–60. PubMed PMCID: PMC2693913.

    Google Scholar 

  40. Nai Q, Li S, Wang SH, Liu J, Lee FJ, Frankland PW, et al. Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory. Biol Psychiatry 2010;67(3):246–254. PubMed.

    Google Scholar 

  41. Scott L, Zelenin S, Malmersjo S, Kowalewski JM, Markus EZ, Nairn AC, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci U S A. 2006;103(3):762–7. PubMed PMCID: PMC1334633.

    Google Scholar 

  42. Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004;24(5):1149–1158. PubMed.

    Google Scholar 

  43. Luginger E, Wenning GK, Bosch S, Poewe W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000;15(5):873–878. PubMed.

    Google Scholar 

  44. Ferrada C, Moreno E, Casado V, Bongers G, Cortes A, Mallol J, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009 May;157(1):64–75. PubMed PMCID: PMC2697789.

    Google Scholar 

  45. Franco R, Martinez-Pinilla E, Lanciego JL, Navarro G. Basic pharmacological and structural evidence for class A G-protein-coupled receptor heteromerization. Front Pharmacol. 2016;7:76. PubMed PMCID: PMC4815248.

    Google Scholar 

  46. Rodriguez M, Moreno E, Moreno-Delgado D, Navarro G, Mallol J, Cortés A, et al. Receptor heterocomplexes formed by dopamine D1, histamine H3 and N-methyl-D-aspartate glutamate receptors as targets to prevent neuronal death in Alzheimer’s disease. Mol Neurobiol. 2016. PubMed.

    Google Scholar 

  47. Hasbi A, Fan T, Alijaniaram M, Nguyen T, Perreault ML, O’Dowd BF, et al. Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci U S A. 2009;106(50):21377–82. PubMed PMCID: PMC2795506.

    Google Scholar 

  48. Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. 2011;4:26. PubMed PMCID: PMC3138392.

    Google Scholar 

  49. Verma V, Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2. J Biol Chem. 2010;285(45):35092–103. PubMed PMCID: PMC2966123.

    Google Scholar 

  50. Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A. 2007;104(2):654–9. PubMed PMCID: PMC1766439.

    Google Scholar 

  51. George SR, Kern A, Smith RG, Franco R. Dopamine receptor heteromeric complexes and their emerging functions. Prog Brain Res 2014;211:183–200. PubMed.

    Google Scholar 

  52. Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002;277(20):18091–18097. PubMed.

    Google Scholar 

  53. Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003;278(47):46741–46749. PubMed.

    Google Scholar 

  54. Borroto-Escuela DO, Marcellino D, Narvaez M, Flajolet M, Heintz N, Agnati L, et al. A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochem Biophys Res Commun 2010;394(1):222–227. PubMed.

    Google Scholar 

  55. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Ciruela F, Agnati LF, Fuxe K. On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J Mol Biol 2011;406(5):687–699. PubMed.

    Google Scholar 

  56. Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurology 2003;61(11 Suppl 6):S19–S23. PubMed.

    Google Scholar 

  57. Stromberg I, Popoli P, Muller CE, Ferre S, Fuxe K. Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 2000;12(11):4033–4037. PubMed.

    Google Scholar 

  58. Azdad K, Gall D, Woods AS, Ledent C, Ferre S, Schiffmann SN. Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 2009;34(4):972–986. PubMed.

    Google Scholar 

  59. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Gomez-Soler M, Corrales F, Marcellino D, et al. Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys Res Commun 2010;402(4):801–807. PubMed.

    Google Scholar 

  60. Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321(5890):848–51. PubMed PMCID: PMC2833421.

    Google Scholar 

  61. Navarro G, Aymerich MS, Marcellino D, Cortes A, Casado V, Mallol J, et al. Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J Biol Chem. 2009;284(41):28058–68. PubMed PMCID: PMC2788857.

    Google Scholar 

  62. Fuxe K, Ferre S, Snaprud P, von Euler G, Johansson B, Fredholm B. Antagonistic A2A/D2 receptor interactions in the striatum as a basis for adenosine – dopamine interactions for the central nervous system. Drug Dev Res. 1993;28:374–80. Epub 1993/03/01. eng

    Article  CAS  Google Scholar 

  63. Tanganelli S, Sandager Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, et al. Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson's Disease. Parkinsonism Relat Disord 2004;10(5):273–280. PubMed.

    Google Scholar 

  64. Antonelli T, Fuxe K, Agnati L, Mazzoni E, Tanganelli S, Tomasini MC, et al. Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson’s disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 2006;248(1–2):16–22. PubMed.

    Google Scholar 

  65. Pintsuk J, Borroto-Escuela DO, Pomierny B, Wydra K, Zaniewska M, Filip M, et al. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder. Pharmacol Biochem Behav 2016;144:85–91. PubMed.

    Google Scholar 

  66. Hauser RA. Future treatments for Parkinson’s disease: surfing the PD pipeline. Int J Neurosci 2011;121 Suppl 2:53–62. PubMed.

    Google Scholar 

  67. Pinna A, Bonaventura J, Farre D, Sanchez M, Simola N, Mallol J, et al. L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp Neurol 2014;253:180–191. PubMed.

    Google Scholar 

  68. Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A. 2007;104(4):1325–30. PubMed PMCID: PMC1783140.

    Google Scholar 

  69. Galter D, Pernold K, Yoshitake T, Lindqvist E, Hoffer B, Kehr J, et al. MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson's disease. Genes Brain Behav. 2010;9(2):173–81. PubMed PMCID: PMC4154513.

    Google Scholar 

  70. Marcellino D, Lindqvist E, Schneider M, Muller CE, Fuxe K, Olson L, et al. Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiol Dis 2010;40(2):460–466. PubMed.

    Google Scholar 

  71. Sauer R, Maurinsh J, Reith U, Fulle F, Klotz KN, Muller CE. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 2000;43(3):440–448. PubMed.

    Google Scholar 

  72. Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P. From alpha-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease. Brain Res 2012;1476:183–202. PubMed.

    Google Scholar 

  73. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, et al. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology. 2014;39(1):131–55. PubMed PMCID: PMC3857668.

    Google Scholar 

  74. Cabello N, Gandia J, Bertarelli DC, Watanabe M, Lluis C, Franco R, et al. Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem. 2009;109(5):1497–507. PubMed PMCID: PMC3925975.

    Google Scholar 

  75. Ciruela F, Gomez-Soler M, Guidolin D, Borroto-Escuela DO, Agnati LF, Fuxe K, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta 2011;1808(5):1245–1255. PubMed.

    Google Scholar 

  76. Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 2001;25(4):505–513. PubMed.

    Google Scholar 

  77. Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A. 2002;99(18):11940–5. PubMed PMCID: PMC129373.

    Google Scholar 

  78. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 2006;29(11):647–654. PubMed.

    Google Scholar 

  79. Vallano A, Fernandez-Duenas V, Garcia-Negredo G, Quijada MA, Simon CP, Cuffi ML, et al. Targeting striatal metabotropic glutamate receptor type 5 in Parkinson’s disease: bridging molecular studies and clinical trials. CNS Neurol Disord Drug Targets 2013;12(8):1128–1142. PubMed.

    Google Scholar 

  80. Nyholm D. Enteral levodopa/carbidopa gel infusion for the treatment of motor fluctuations and dyskinesias in advanced Parkinson’s disease. Expert Rev Neurother 2006;6(10):1403–1411. PubMed.

    Google Scholar 

  81. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord 2006;21(11):1844–1850. PubMed.

    Google Scholar 

  82. Luquin MR, Laguna J, Obeso JA. Selective D2 receptor stimulation induces dyskinesia in parkinsonian monkeys. Ann Neurol 1992;31(5):551–554. PubMed.

    Google Scholar 

  83. Rascol O, Nutt JG, Blin O, Goetz CG, Trugman JM, Soubrouillard C, et al. Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 2001;58(2):249–254. PubMed.

    Google Scholar 

  84. Carriba P, Navarro G, Ciruela F, Ferre S, Casado V, Agnati L, et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 2008;5(8):727–733. PubMed.

    Google Scholar 

  85. Navarro G, Ferre S, Cordomi A, Moreno E, Mallol J, Casado V, et al. Interactions between intracellular domains as key determinants of the quaternary structure and function of receptor heteromers. J Biol Chem. 2010;285(35):27346–59. PubMed PMCID: PMC2930733.

    Google Scholar 

  86. Bonaventura J, Rico AJ, Moreno E, Sierra S, Sanchez M, Luquin N, et al. L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 2014;79:90–100. PubMed.

    Google Scholar 

  87. Armentero MT, Pinna A, Ferre S, Lanciego JL, Muller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther. 2011;132(3):280–99. PubMed PMCID: PMC3205226.

    Google Scholar 

  88. Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007;370(9600):1706–1713. PubMed.

    Google Scholar 

  89. Sam AH, Salem V, Ghatei MA. Rimonabant: from RIO to Ban. J Obes. 2011;2011:432607. PubMed PMCID: PMC3136184.

    Google Scholar 

  90. Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease. Prog Neuro-Psychopharmacol Biol Psychiatry 2016;64:200–208. PubMed.

    Google Scholar 

  91. Sierra S, Luquin N, Rico AJ, Gomez-Bautista V, Roda E, Dopeso-Reyes IG, et al. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct. 2015;220(5):2721–38. PubMed PMCID: PMC4549378.

    Google Scholar 

  92. Callen L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortes A, Mallol J, et al. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem. 2012;287(25):20851–65. PubMed PMCID: PMC3375509.

    Google Scholar 

  93. Lanciego JL, Barroso-Chinea P, Rico AJ, Conte-Perales L, Callen L, Roda E, et al. Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis. J Psychopharmacol 2011;25(1):97–104. PubMed.

    Google Scholar 

  94. Cordomi A, Navarro G, Aymerich MS, Franco R. Structures for G-protein-coupled receptor tetramers in complex with G proteins. Trends Biochem Sci 2015;40(10):548–551. PubMed.

    Google Scholar 

  95. Navarro G, Cordomi A, Zelman-Femiak M, Brugarolas M, Moreno E, Aguinaga D, et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 2016;14:26. PubMed PMCID: PMC4822319.

    Google Scholar 

  96. Beggiato S, Antonelli T, Tomasini MC, Borelli AC, Agnati LF, Tanganelli S, et al. Adenosine A2A-D2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal gaba pathway: possible relevance for parkinson's disease and its treatment. Curr Protein Pept Sci 2014;15(7):673–680. PubMed.

    Google Scholar 

  97. Fernandez-Duenas V, Gomez-Soler M, Morato X, Nunez F, Das A, Kumar TS, et al. Dopamine D(2) receptor-mediated modulation of adenosine A(2A) receptor agonist binding within the A(2A)R/D(2)R oligomer framework. Neurochemistry international. 2013;63(1):42–6. PubMed PMCID: 3705641.

    Google Scholar 

  98. Wang C, Buck DC, Yang R, Macey TA, Neve KA. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005;93(4):899–909. PubMed.

    Google Scholar 

  99. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron 2006;52(5):897–909. PubMed.

    Google Scholar 

  100. Loschmann PA, De Groote C, Smith L, Wullner U, Fischer G, Kemp JA, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease. Exp Neurol 2004;187(1):86–93. PubMed.

    Google Scholar 

  101. Stockwell KA, Scheller D, Rose S, Jackson MJ, Tayarani-Binazir K, Iravani MM, et al. Continuous administration of rotigotine to MPTP-treated common marmosets enhances anti-parkinsonian activity and reduces dyskinesia induction. Exp Neurol 2009;219(2):533–542. PubMed.

    Google Scholar 

  102. Ballion B, Frenois F, Zold CL, Chetrit J, Murer MG, Gonon F. D2 receptor stimulation, but not D1, restores striatal equilibrium in a rat model of Parkinsonism. Neurobiol Dis 2009;35(3):376–384. PubMed.

    Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Swedish Medical Research Council (62X-00715-50-3) and Parkinsonfonden to KF, by AFA Försäkring (130328) to KF and DOBE, and by the Hjärnfonden to DOBE. DOB-E belongs to Academia de Biólogos Cubanos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Fuxe M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Borroto-Escuela, D.O., Narváez, M., Navarro, G., Franco, R., Fuxe, K. (2017). Heteroreceptor Complexes Implicated in Parkinson’s Disease. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_20

Download citation

Publish with us

Policies and ethics