Skip to main content

The Use of Spatial Intensity Distribution Analysis to Examine G Protein-Coupled Receptor Oligomerization

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

Spatial Intensity Distribution Analysis (SpIDA) is a new approach for detecting protein oligomerization states that can be applied not only to live cells but also fixed cells and native tissue. This approach is based on the generation of pixel-integrated fluorescence intensity histograms from laser scanning fluorescence microscopy images. These histograms are then fit with super-Poissonian distribution functions to obtain density maps and quantal brightness values of the fluorophore that are used to determine the proportions of monomer and dimers/oligomers of the fluorophore-tagged protein. In this chapter we describe SpIDA and highlight its advantages compared to other biochemical or biophysical approaches. We provide guidelines that should be useful to readers who wish to perform SpIDA measurements and describe the application of SpIDA as a post-acquisition imaging histogram analysis software tool to investigate the oligomeric state of G protein-coupled receptors (GPCRs) at the surface of mammalian cells in order to define the steady-state proportion of monomeric and dimeric/oligomeric forms and how this may be regulated by cellular challenges such as ligand treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BG:

O6-BenzylGuanine

BRET:

Bioluminescence Resonance Energy Transfer

CD86:

Cluster of Differentiation Protein 86

EGF:

Epidermal Growth Factor

EGFR:

Epidermal Growth Factor Receptor

FCS:

Fluorescence Correlation Spectroscopy

FIDA:

Fluorescence Intensity Distribution Analysis

FRET:

Fluorescence Resonance Energy Transfer

GFP:

Green Fluorescent Protein

GPCR:

G-Protein Coupled Receptor

GUI:

Graphical User interface

hD2:

human Dopamine D2 receptor

hD3:

human Dopamine D3 receptor

hM1 :

human Muscarinic acetylcholine M1 receptor

hM3 :

human Muscarinic acetylcholine M3 receptor

IU:

Intensity Unit

mEGFP:

monomeric Enhanced Green Fluorescent Protein

MEU:

Monomeric Equivalent Unit

OX1 :

human Orexin 1 receptor

PCH:

Photon Counting Histogram

PM:

Parmitoylation + Myristolation

PMT:

Photo-Multiplier Tube

PSF:

Point Spread Function

QB:

Quantal Brightness

RET:

Resonance Energy Transfer

RoI:

Region of Interest

SpIDA:

Spatial Intensity Distribution Analysis

TIRF:

Total Internal Reflection Fluorescence

WN:

White Noise

5-HT2C :

5-Hydroxytryptamine 2C

References

  1. Kuzak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK. Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist bindind by Gi2. J Biol Chem. 2009;284(39):26732–41.

    Article  Google Scholar 

  2. Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A. 2007;104(18):7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferré S, Casadó V, Devi LA, Filizola FM, Jockers R, Lohse MJ, et al. G protein-coupled receptor oligomerisation revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66(2):413–34.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Milligan G. G-protein coupled receptor heterodimers: pharmacology, function and relevance to drug discovery. Drug Discovery Today. 2006;June 11(11–12):541–9.

    Google Scholar 

  5. Patowary S, Alvarez-Curto E, Xu TR, Holz JD, Oliver JA, Milligan G, et al. The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem J. 2013;425(2):303–12.

    Article  Google Scholar 

  6. Chen Y, Müller JD, So PTC, Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J. 1999;77:553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Godin AG, Costantino S, Lorenzo LE, Swift JL, Sergeev M, Ribeiro-da-Silva A, et al. Revealing protein oligomerisation and densities in situ using spatial intensity distribution analysis. Proc Natl Acad Sci U S A. 2011;108(17):7010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbeau A, Swift JL, Godin AG, De Koninck Y, Wiseman PW, Beaulieu JM. Spatial intensity distribution analysis (SpIDA): a new tool for receptor tyrosine kinase activation and transactivation quantification. Methods Cell Biol. 2013;117:1–19.

    Article  CAS  PubMed  Google Scholar 

  9. Swift JL, Godin AG, Dor’e K, Freland L, Bouchard N, Nimmo C, et al. Quantification of receptor tyrosine kinase transactivation through direct dimerization and surface density measurements in single cells. Proc Natl Acad Sci U S A 2011;108(17):7016–7021.

    Google Scholar 

  10. Barbeau A, Godin AG, Swift JL, De Koninck Y, Wiseman PW, Beaulieu JM. Quantification of receptor tyrosine kinase activation and transactivation by G-protein-coupled receptors using spatial intensity distribution analysis (SpIDA). Methods Enzymol. 2013;522:109–31.

    Article  CAS  PubMed  Google Scholar 

  11. Zakrys L, Ward RJ, Pediani JD, Godin AG, Graham GJ, Milligan G. Roundabout 1 exists predominantly as a basal dimeric complex and this is unaffected by the binding of ligand Slit2. Biochem J. 2014;461:61–73.

    Article  CAS  PubMed  Google Scholar 

  12. Ward RJ, Pediani JD, Godin AG, Milligan G. Regulation of oligomeric organisation of the serotonin 5-hydroxytryptamine 2C receptor observed by spatial intensity distribution analysis. J Biol Chem. 2015;290(20):12844–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic regulation of the quaternary organisation of the M1 muscainic receptor by subtype-selective antagonist drugs. J Biol Chem. 2016;291:13132-46.

    Google Scholar 

  14. Hamrang Z, McGlynn HJ, Clarke D, Penny J, Pluen A. Monitoring the kinetics of CellTrace™ calcein red-orange AM intracellular accumulation with spatial intensity distribution analysis. Biochim Biophys Acta 2014;1840:2914–2923.

    Google Scholar 

  15. Hamrang Z, Arthanari Y, Clarke D, Pluen A. Quantitative assessment of P-glycoprotein expression and function using confocal image analysis. Microsc Microanal. 2014;20:1329–39.

    Article  CAS  PubMed  Google Scholar 

  16. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green fluorescent protein. Gene. 1992;111(2):229–333.

    Article  CAS  PubMed  Google Scholar 

  17. von Stetten D, Noirclerc-Savoye M, Goedhart J, Gadella TWJ, Royant A. Structure of a fluorescent protein from Aequorea victoria bearing the obligate-monomer mutation A206K. Acta Crystallogr F Struct Biol Cryst Commun. 2012;68:878–82.

    Article  Google Scholar 

  18. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. A general method for the covalent labelling of fusion proteins with small molecules in vivo. Nature Biotech. 2003;21:86–9.

    Article  CAS  Google Scholar 

  19. Ward RJ, Pediani JD, Milligan G. Ligand-induced internalization of the orexin OX1 and cannabinoid CB1 receptors assessed via N-terminal SNAP and CLIP-tagging. Brit J Pharm. 2011;162:1439–52.

    Article  CAS  Google Scholar 

  20. Ward RJ, Alvarez-Curto E, Milligan G. Using the Flp-In™T-Rex™ system to regulate GPCR expression. Methods Mol Biol. 2011;746:21–37.

    Article  CAS  PubMed  Google Scholar 

  21. Hiraoka Y, Sedat JW, Agard DA. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys J. 1990;57:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cole RW, Jinadasa T, Brown CM. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control. Nat Protoc. 2011;6(12):1929–41.

    Article  CAS  PubMed  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9(7):671–5.

    Article  CAS  Google Scholar 

  24. Matthews C, Cordelieres FP. MetroloJ: an ImageJ plugin to help monitor microscopes’ health. ImageJ User and Developer Conference MetroloJ website. 2010. Available: http://imagejdocutudorlu/dokuphp?id=plugin:analysis:metroloj:start. Accessed Oct 2013.

  25. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, et al. Single molecule analysis of fluorescently labelled G-protein coupled receptors reveals complexes with distinct dynamics and organisation. Proc Natl Acad Sci U S A. 2013;110(2):743–8.

    Article  CAS  PubMed  Google Scholar 

  26. Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharm. 2013;84(4):630–42.

    Article  CAS  Google Scholar 

  27. Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane micro-domains of live cells. Science. 2002;296:913–6.

    Article  CAS  PubMed  Google Scholar 

  28. Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep. 2014;9:1306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hern JA, Baig AH, Mashanov GI, Birsall B, Corrie JE, Laxareno S, et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A. 2010;107(6):2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lambert NA. GPCR dimers fall apart. Sci Signal. 2010;3(115):pe12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gavalas A, Lan T-H, Liu Q, Corrêa IR Jr, Javitch JA, Lambert NA. Segregation of family A G-protein coupled receptor protomers in the plasma membrane. Mol Pharmacol. 2013;84(3):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fonesca JM, Lambert NA. Instability of a class A G-protein coupled receptor oligomer interface. Mol Pharmacol. 2009;75(6):1296–9.

    Article  Google Scholar 

  33. Herrick-Davis K, Grinde E, Lindsley T, Teitler M, Manica F, Cowan A, et al. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells. Mol Pharm. 2015;87:660–73.

    Article  CAS  Google Scholar 

  34. Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, Devree BT, et al. Ligand regulated oligomerisation of β(2)-adrenoceptors in a model lipid bilayer. EMBO J. 2009;28(21):3315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kasai RS, Kusumi A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol. 2014;27:78–86.

    Article  CAS  PubMed  Google Scholar 

  36. Kasai RS, Kenichi GN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192(3):463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herrick-Davis K, Grinde E, Harrigan TJ, Mazurkiewicz JE. Inhibition of serotonin 5-hydroxytryptamine 2C receptor function through heterodimerization: receptor dimers bind two molecules of ligand and one G-protein. J Biol Chem. 2005;280(48):40144–51.

    Article  CAS  PubMed  Google Scholar 

  38. Herrick-Davis K, Grinde E, Lindsley T, Cowan A, Mazurkiewicz JE. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem. 2012;287(28):23604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milligan G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharm. 2004;66(1):1–7.

    Article  CAS  Google Scholar 

  40. Milligan G. G protein-coupled receptor hetero-dimerisation: contribution to pharmacology and function. Br J Pharmacol. 2009;158(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Milligan G. The prevalence, maintenance and relevance of G protein-coupled receptor oligomerisation. Mol Pharm. 2013;84(2):158–69.

    Article  CAS  Google Scholar 

  42. Ilien B, Glasser N, Clamme J-P, Didier P, Piemont E, Chinnappan R, et al. Pirenzepine promotes the dimerization of Muscarinic M1 receptors through a three-step binding process. J Biol Chem. 2009;284(29):19533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Milligan G, Bond RA. Inverse agonism and the regulation of receptor number. TiPS. 1997;18(12):468–74.

    CAS  PubMed  Google Scholar 

  44. Darmon M, Al Awabdh S, Emerit M-B, Masson J. Insights into serotonin receptor trafficking: cell membrane targeting and internalisation. Prog Mol Biol Transl Sci. 2015;132:97–126.

    Article  CAS  PubMed  Google Scholar 

  45. Gurevich V, Gurevich EV. Arrestins: critical players in trafficking of many GPCRs. Prog Mol Biol Transl Sci. 2015;132:1–14.

    Article  CAS  PubMed  Google Scholar 

  46. Chilmonczyk Z, Bojarski A, Sylte I. Ligand-directed trafficking of receptor stimulus. Pharmacol Rep. 2014;66(6):1011–21.

    Article  CAS  PubMed  Google Scholar 

  47. Liste MJ, Caltabiano G, Ward RJ, Alvarez-Curto E, Marsango S, Milligan G. The molecular basis of oligomeric organization of the human M3 muscarinic acetylcholine receptor. Mol Pharmacol. 2015;87(6):936–53.

    Article  CAS  PubMed  Google Scholar 

  48. Marsango S, Caltabiano G, Pou C, Varela Liste MJ, Milligan G. Analysis of human dopamine D3 receptor quaternary structure. J Biol Chem. 2015;290(24):15146–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harikumar KG, Pinon DI, Miller LJ. Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J Biol Chem. 2007;282(42):30363–72.

    Article  CAS  PubMed  Google Scholar 

  50. Guitart X, Navarro G, Moreno E, Yano H, Cai N-S, Sánchez-Soto M, et al. Functional selectivity of allosteric interactions within G-protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer. Mol Pharmacol. 2014;86(4):417–29.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Godin AG, Rappaz B, Potvin-Trottier L, Kennedy TE, De Koninck Y, Wiseman PW. Spatial intensity distribution analysis reveals abnormal oligomerisation of proteins in single cells. Biophys J. 2015;109:710–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dean KM, Lubbeck JL, Binder JK, Schwall LR, Jimenez R, Palmer AE. Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation. Biophys J. 2011;101:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA. Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neuroscience. 2012;32(37):12915–20.

    Article  CAS  PubMed  Google Scholar 

  54. Sergeev M, Godin AG, Kao L, Abuladze N, Wiseman PW, Kurtz I. Determination of membrane protein transporter oligomerisation in native tissue using spatial fluorescence intensity fluctuation analysis. PLoS One. 2012;7(4):1–11.

    Article  Google Scholar 

  55. Froust D, Caldwell B, Godin A, Ustione A, Wiseman P, Piston D. Understanding dopamine receptor mediated regulation of insulin secretion by two colour spatial intensity distribution analysis. Biophys J. 2016;110(3 supplement 1):142a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ward, R.J., Marsango, S., Pediani, J.D., Milligan, G. (2017). The Use of Spatial Intensity Distribution Analysis to Examine G Protein-Coupled Receptor Oligomerization. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_2

Download citation

Publish with us

Policies and ethics