Marine Climate Engineering

Chapter

Abstract

As a means of countering climate change, some scientists have proposed that climate engineering, which is a deliberate action designed to alter the Earth’s climate, could be done. In this chapter an overview is given of the proposed climate engineering methods that involve the direct manipulation of marine systems. This includes methods that enhance the ocean’s natural physical, chemical, and biological CO2 sequestration pathways, as well as purely technical ones that either use the ocean as a carbon storage reservoir or alter it’s properties to affect the Earth’s radiation budget. Few methods have been thoroughly evaluated and there are still many unknowns, at both the level of basic understanding and as to whether or not it would even be technologically feasible to implement any of them. Research so far has shown that some CE methods do have the potential to alter certain aspects of the climate system. Some have more potential than others and most of them appear to have significant side effects.

Keywords

Climate engineering Climate intervention Geoengineering Carbon dioxide removal (CDR) Greenhouse gas removal Earth radiation management Ocean iron fertilization Ocean alkalinization Ocean fertilization Ocean alkalinity enhancement Solar radiation management (SRM) Artificial ocean upwelling Ocean afforestation Climate change Blue carbon Radiation management Bioenergy with carbon capture and storage (BECCS) 

References

  1. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20:GB2017. doi: 10.1029/2005gb002591 CrossRefGoogle Scholar
  2. Aziz A, Hailes HC, Ward JM, Evans JRG (2014) Long-term stabilization of reflective foams in sea water. RSC Adv 4:53028–53036. doi: 10.1039/C4RA08714C CrossRefGoogle Scholar
  3. Bala G, Caldeira K, Nemani R et al (2011) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn 37:915–931. doi: 10.1007/s00382-010-0868-1 CrossRefGoogle Scholar
  4. Bauer JE, Cai W-J, Raymond PA et al (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70. doi: 10.1038/nature12857 CrossRefGoogle Scholar
  5. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271. doi: 10.1016/j.copbio.2009.06.002 CrossRefGoogle Scholar
  6. Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617. doi: 10.1126/science.1131669 CrossRefGoogle Scholar
  7. Burdige DJ (2005) Burial of terrestrial organic matter in marine sediments: a re-assessment. Global Biogeochem Cycles 19:1–7. doi: 10.1029/2004GB002368 CrossRefGoogle Scholar
  8. Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27:225–228CrossRefGoogle Scholar
  9. Cripps G, Widdicombe S, Spicer JI, Findlay HS (2013) Biological impacts of enhanced alkalinity in Carcinus maenas. Mar Pollut Bull 71:190–198. doi: 10.1016/j.marpolbul.2013.03.015 CrossRefGoogle Scholar
  10. Cvijanovic I, Caldeira K, MacMartin DG (2015) Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate. Environ Res Lett 10:044020. doi: 10.1088/1748-9326/10/4/044020 CrossRefGoogle Scholar
  11. Duarte CM, Losada IJ, Hendriks IE et al (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968. doi: 10.1038/nclimate1970 CrossRefGoogle Scholar
  12. Eisaman MD, Parajuly K, Tuganov A et al (2012) CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ Sci 5:7346. doi: 10.1039/c2ee03393c CrossRefGoogle Scholar
  13. Ekau W, Auel H, Pörtner H-O, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699CrossRefGoogle Scholar
  14. Evans J, Stride E, Edirisinghe M et al (2010) Can oceanic foams limit global warming? Clim Res 42:155–160. doi: 10.3354/cr00885 CrossRefGoogle Scholar
  15. Flynn KJ, Mitra A, Greenwell HC, Sui J (2013) Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus 3:20120037. doi: 10.1098/rsfs.2012.0037 CrossRefGoogle Scholar
  16. Friedlingstein P, Andrew RM, Rogelj J et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715. doi: 10.1038/ngeo2248 CrossRefGoogle Scholar
  17. Gnanadesikan A, Sarmiento JL, Slater RD (2003) Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob Biogeochem Cycles 17:1050. doi: 10.1029/2002gb001940 CrossRefGoogle Scholar
  18. Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos Trans A Math Phys Eng Sci 369:1980–1996. doi: 10.1098/rsta.2011.0003 CrossRefGoogle Scholar
  19. Hangx SJT, Spiers CJ (2009) Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability. Int J Greenhouse Gas Control 3:757–767. doi: 10.1016/j.ijggc.2009.07.001 CrossRefGoogle Scholar
  20. Hartmann J, West AJ, Renforth P (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutirents, and mitigate ocean acidification. Rev Geophys 51:113–149. doi: 10.1002/rog.20004.1.Institute CrossRefGoogle Scholar
  21. Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res Ocean 113. doi: 10.1029/2007jc004373
  22. Heinze C, Meyer S, Goris N et al (2015) The ocean carbon sink – impacts, vulnerabilities and challenges. Earth Syst Dynam 6:327–358. doi: 10.5194/esd-6-327-2015 CrossRefGoogle Scholar
  23. Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C (2013a) Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys Res Lett 40:5909–5914. doi: 10.1002/2013GL057981 CrossRefGoogle Scholar
  24. Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C (2013b) Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys Res Lett. doi: 10.1002/2013GL057981
  25. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  26. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  27. Karl D, Letelier R (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268. doi: 10.3354/meps07547 CrossRefGoogle Scholar
  28. Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Commun 5:1–11. doi: 10.1038/ncomms4304 Google Scholar
  29. Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20:915–922. doi: 10.1016/0360-5442(95)00035-F CrossRefGoogle Scholar
  30. Köhler P, Abrams JF, Völker C et al (2013) Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ Res Lett 8:14009CrossRefGoogle Scholar
  31. Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci U S A 107:20228–20233. doi: 10.1073/pnas.1000545107 CrossRefGoogle Scholar
  32. Kwiatkowski L, Ricke KL, Caldeira K (2015) Atmospheric consequences of disruption of the ocean thermocline. Environ Res Lett 10:034016. doi: 10.1088/1748-9326/10/3/034016 CrossRefGoogle Scholar
  33. Lackner KS, Brennan S, Matter JM et al (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci U S A 109:13156–13162. doi: 10.1073/pnas.1108765109 CrossRefGoogle Scholar
  34. Lampitt R, Achterberg E, Anderson T et al (2008) Ocean fertilization: a potential means of geoengineering? Philos Trans R Soc A Math Phys Eng Sci 366:3919–3945. doi: 10.1098/rsta.2008.0139 CrossRefGoogle Scholar
  35. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3:52–58. doi: 10.1006/asle.2002.0048 CrossRefGoogle Scholar
  36. Lawrence MW (2014) Efficiency of carbon sequestration by added reactive nitrogen in ocean fertilisation. Int J Glob Warming 6:15–33CrossRefGoogle Scholar
  37. Lovelock JF, Rapley CG (2007) Ocean pipes could help the Earth to cure itself. Nature 449:403. doi: 10.1038/449403a CrossRefGoogle Scholar
  38. Marchetti C (1977) On geoengineering and the CO2 problem. Clim Chang 1:59–88CrossRefGoogle Scholar
  39. Marion GM, Millero FJ, Feistel R (2009) Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models. Ocean Sci 5:285–291. doi: 10.5194/os-5-285-2009 CrossRefGoogle Scholar
  40. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13. doi: 10.1029/PA005i001p00001 CrossRefGoogle Scholar
  41. Maruyama S, Yabuki T, Sato T et al (2011) Evidences of increasing primary production in the ocean by Stommel’s perpetual salt fountain. Deep Res Part I Oceanogr Res Pap 58:567–574. doi: 10.1016/j.dsr.2011.02.012 CrossRefGoogle Scholar
  42. Matear RJ, Elliot B (2004) Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. J Geophys Res 109:C04001. doi: 10.1029/2000JC000321 CrossRefGoogle Scholar
  43. Mengis N, Martin T, Keller DP, Oschlies A (2016) Assessing climate impacts and risks of ocean albedo modification in the Arctic. J Geophys Res Ocean:8271–8295. doi: 10.1002/2015JC011433
  44. Ming T, de Richter R, Liu W, Caillol S (2014) Fighting global warming by climate engineering: is the Earth radiation management and the solar radiation management any option for fighting climate change? Renew Sust Energ Rev 31:792–834. doi: 10.1016/j.rser.2013.12.032 CrossRefGoogle Scholar
  45. N‘Yeurt ADR, Chynoweth DP, Capron ME et al (2012) Negative carbon via ocean afforestation. Process Saf Environ Prot 90:467–474. doi: 10.1016/j.psep.2012.10.008 CrossRefGoogle Scholar
  46. National Reseach Council (2015) Climate intervention: carbon dioxide removal and reliable sequestration. The National Academies Press, Washington, DCGoogle Scholar
  47. Orr JC (2004) Modelling the ocean storage of CO2 – the GOSAC study. ReportGoogle Scholar
  48. Oschlies A, Koeve W, Rickels W, Rehdanz K (2010) Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences 7:4017–4035CrossRefGoogle Scholar
  49. Partanen AI, Kokkola H, Romakkaniemi S et al (2012) Direct and indirect effects of sea spray geoengineering and the role of injected particle size. J Geophys Res Atmos 117:1–16. doi: 10.1029/2011JD016428 CrossRefGoogle Scholar
  50. Rau GH (2014) Enhancing the ocean’s role in CO2 mitigation. In: Global environmental change. Springer Netherlands, Dordrecht, pp 817–824Google Scholar
  51. Rau GH (2008) Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environ Sci Technol 42:8935–8940. doi: 10.1021/es800366q CrossRefGoogle Scholar
  52. Rau GH, Carroll SA, Bourcier WL et al (2013) Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc Natl Acad Sci U S A 110:10095–10100. doi: 10.1073/pnas.1222358110 CrossRefGoogle Scholar
  53. Renforth P, Jenkins BG, Kruger T (2013) Engineering challenges of ocean liming. Energy 60:442–452. doi: 10.1016/j.energy.2013.08.006 CrossRefGoogle Scholar
  54. Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. doi: 10.1007/s12155-008-9008-8 CrossRefGoogle Scholar
  55. Seitz R (2011) Bright water: hydrosols, water conservation and climate change. Clim Chang 105:365–381. doi: 10.1007/s10584-010-9965-8 CrossRefGoogle Scholar
  56. Smetacek V, Klaas C, Strass VH et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319. http://www.nature.com/nature/journal/v487/n7407/abs/nature11229.html#supplementary-information CrossRefGoogle Scholar
  57. Strand SE, Benford G (2009) Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments. Environ Sci Technol 43:1000–1007. doi: 10.1021/es8015556 CrossRefGoogle Scholar
  58. Tollefson J (2012) Ocean-fertilization project off Canada sparks furore. Nature 490:458–459. doi: 10.1038/490458a CrossRefGoogle Scholar
  59. Walter AGN (2011) Controlling the Earth’s albedo using reflective hollow glass spheres. Int J Glob Environ Issues 11:91. doi: 10.1504/IJGENVI.2011.043508 CrossRefGoogle Scholar
  60. White A, Björkman K, Grabowski E et al (2010) An open ocean trial of controlled upwelling using wave pump technology. J Atmos Ocean Technol 27:385–396. doi: 10.1175/2009JTECHO679.1 CrossRefGoogle Scholar
  61. Zamora LM, Oschlies A, Bange HW et al (2012) Nitrous oxide dynamics in low oxygen regions of the Pacific: insights from the MEMENTO database. Biogeosciences 9:5007–5022. doi: 10.5194/bg-9-5007-2012 CrossRefGoogle Scholar
  62. Zhou S, Flynn P (2005) Geoengineering downwelling ocean currents: a cost assessment. Clim Chang 71:203–220CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations