Skip to main content

Measurement and Classification of Smart Systems Data Traffic Over 5G Mobile Networks

  • Chapter
  • First Online:
Technology for Smart Futures

Abstract

Machine-to-Machine communication is rapidly growing and becoming a significant part of the current 4G and future 5G mobile network data traffic, which is intended to provide coverage support and lower costs for mobile network providers. The 5G mobile network represents a promising technology to support the future of Machine-to-Machine communications. In recent years, smart devices, such as smartphones and traffic monitoring systems, have experienced exponential growth over mobile networks with different radio resource usage. This has caused massive challenges as a result of simultaneous access data traffic as well as a large number of devices sending small-sized data. This chapter proposes a novel data traffic aggregation and slicing model with algorithms in 5G uplink, based on classifying and measuring the data traffic to achieve quality of service for smart systems. Moreover, 5G radio resources are efficiently shared by several smart devices in a relay node by aggregating incoming data traffic based on quality of service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, I., & Venkatesan, S. (2012). Remote subscription management of M2M terminals in 4G cellular wireless networks. In Proceedings – conference on local computer networks, LCN (pp. 877–885).

    Google Scholar 

  2. Ajah, S., et al. (2015). Machine-to-machine communications energy efficiencies: The implications of different M2M communications specifications. International Journal of Wireless and Mobile Computing, 8(1), 15–26. Available at: http://dx.doi.org/10.1504/IJWMC.2015.066752.

  3. Annunziato, A. (2015). 5G vision: NGMN - 5G initiative. In IEEE Vehicular Technology Conference. doi:10.1109/VTCSpring.2015.7145586.

  4. Booysen, M. J., Zeadally, S., & van Rooyen, G.-J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET Communications, 5(11), 1619–1631. Available at: http://ieeexplore.ieee.org.sci-hub.org/xpl/articleDetails.jsp?tp=&arnumber=5969652&queryText=survey+security+VANETs+multihop.

    Article  Google Scholar 

  5. Casale, G., Zhang, E. Z., & Smirni, E. (2010). Trace data characterization and fitting for Markov modeling. Performance Evaluation, 67(2), 61–79.

    Article  Google Scholar 

  6. Chen, K. C., & Lien, S. Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Networks, 18, 3–23.

    Article  Google Scholar 

  7. Chen, M., Wan, J., & Li, F. (2012). Machine-to-machine communications: Architectures, standards and applications. KSII Transactions on Internet and Information Systems, 6(2), 480–497.

    Google Scholar 

  8. Chin, W. H., Fan, Z., & Haines, R. (2014). Emerging technologies and research challenges for 5G wireless networks. IEEE Wireless Communications, 21(2), 106–112. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6812298.

    Article  Google Scholar 

  9. Conti, J. P. (2006). The internet of things. Communications Engineer, 4(6), 20.

    Article  Google Scholar 

  10. Ghavimi, F., & Chen, H. H. (2015). M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications. IEEE Communication Surveys and Tutorials, 17(2), 525–549.

    Article  Google Scholar 

  11. Gohil, A., Modi, H., & Patel, S. K. (2013). 5G technology of mobile communication: A survey. In 2013 International Conference on Intelligent Systems and Signal Processing, ISSP 2013 (pp. 288–292). doi:10.1109/ISSP.2013.6526920.

  12. Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: Issues and approaches. IEEE Communications Magazine, 51(6), 86–93.

    Article  Google Scholar 

  13. Iftikhar, M., et al. (2011). Service level agreements (SLAs) parameter negotiation between heterogeneous 4G wireless network operators. Pervasive and Mobile Computing, 7(5), 525–544.

    Article  Google Scholar 

  14. Iwamura, M. (2015). NGMN view on 5G architecture. In IEEE Vehicular Technology Conference. doi:10.1109/VTCSpring.2015.7145953.

  15. Jiang, D., Wang, H., Malkamaki, E., & Tuomaala, E. (2007). Principle and performance of semi-persistent scheduling for VoIP in LTE system. In 2007 international conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2007 (pp. 2861–2864). doi:10.1109/WICOM.2007.710.

  16. Jian, X., et al. (2013). Traffic modeling for machine type communication and its overload control. Tongxin Xuebao/Journal on Communications, 34(9), 123–131.

    Google Scholar 

  17. Lee, C. S., Lee, G. M., & Rhee, W. S. (2014). Smart ubiquitous networks for future telecommunication environments. Computer Standards and Interfaces, 36(2), 412–422.

    Article  Google Scholar 

  18. Lien, S. Y., & Chen, K. C. (2011). Massive access management for QoS guarantees in 3GPP machine-to-machine communications. IEEE Communications Letters, 15(3), 311–313.

    Article  Google Scholar 

  19. Miaji, Y., & Hassan, S. (2010). Comparative simulation of scheduling mechanism in packet switching network. In Proceedings – 2nd international conference on Network Applications, Protocols and Services, NETAPPS 2010 (pp. 141–147). doi:10.1109/NETAPPS.2010.54.

  20. Nisar, K., Said, A. M., & Hasbullah, H. (2010). Enhanced performance of packet transmission using system model over VoIP network. In Proceedings 2010 International Symposium on Information Technology – Engineering Technology, ITSim’10 (pp. 1005–1008). doi 10.1109/ITSIM.2010.556159.

  21. Niyato, D., et al. (2009). Relay-centric radio resource management and network planning in IEEE 802.16 j mobile multihop relay networks. Communications IEEE, 8(12), 6115–6125. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5351729.

  22. Pashtan, A. (2006). Wireless terrestrial communications: Cellular telephony. Telecommunication Systems, 1, 1–12.

    Google Scholar 

  23. Shafiq, M.Z., et al. (2013). A first look at cellular network performance during crowded events. Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, 41(1), 17–28. Available at: http://dl.acm.org/citation.cfm?doid=2494232.2465754.

  24. Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833–846. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1146402.

    Article  Google Scholar 

  25. Sui, Y., et al. (2013). Moving cells: A promising solution to boost performance for vehicular users. IEEE Communications Magazine, 51(6), 62–68.

    Article  Google Scholar 

  26. Utkovski, Z., Ilik, D., & Kocarev, L. (2013). Wireless Communication Systems (ISWCS 2013), Proceedings of the tenth international symposium on, Wireless Communication Systems (ISWCS 2013). Proceedings of the tenth international symposium, pp. 1–5.

    Google Scholar 

  27. Weyrich, M., Schmidt, J. P., & Ebert, C. (2014). Machine-to-machine communication. IEEE Software, 31(4), 19–23.

    Article  Google Scholar 

  28. Yang, H. (2005). A road to future broadband wireless access: MIMO-OFDM-based air interface. IEEE Communications Magazine, 43(1), 53–60.

    Article  Google Scholar 

  29. Zhang, Y., Li, Z., Mei, S., Xiao, L., & Wang, M. (2009). A new approach for accelerating IPSec communication. In 1st international conference on Multimedia Information Networking and Security, MINES 2009 (pp. 482–485). doi:10.1109/MINES.2009.151.

  30. Zirong, G., & Huaxin, Z. (2009). Simulation and analysis of weighted fair queueing algorithms in OPNET. In Proceedings – 2009 international conference on Computer Modeling and Simulation, ICCMS 2009 (pp. 114–118). doi:10.1109/ICCMS.2009.51.

  31. Sesia, S. (2009). The LTE network architecture, LTE — The UMTS long term evolution: From theory to practice (pp. 23–50). Wiley. doi:10.1109/IPPS.1995.395978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Dighriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dighriri, M., Lee, G.M., Baker, T. (2018). Measurement and Classification of Smart Systems Data Traffic Over 5G Mobile Networks. In: Dastbaz, M., Arabnia, H., Akhgar, B. (eds) Technology for Smart Futures. Springer, Cham. https://doi.org/10.1007/978-3-319-60137-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60137-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60136-6

  • Online ISBN: 978-3-319-60137-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics