Complexity of Bifix-Free Regular Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10329)

Abstract

We study descriptive complexity properties of the class of regular bifix-free languages, which is the intersection of prefix-free and suffix-free regular languages. We show that there exist universal bifix-free languages that meet all the bounds for the state complexity of basic operations (Boolean operations, product, star, and reversal). This is in contrast with suffix-free languages, where it is known that there does not exist such languages. Then we present a stream of bifix-free languages that is most complex in terms of all basic operations, syntactic complexity, and the number of atoms and their complexities, which requires a superexponential alphabet. We also complete the previous results by characterizing state complexity of product, star, and reversal, and establishing tight upper bounds for atom complexities of bifix-free languages. Moreover, we consider the problem of the minimal size of an alphabet required to meet the bounds, and the problem of attainable values of state complexities (magic numbers).

Keywords

Bifix-free Most complex Prefix-free State complexity Suffix-free Transition semigroup 

References

  1. 1.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)MATHGoogle Scholar
  3. 3.
    Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sc. 24(6), 691–708 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideals (2015). http://arxiv.org/abs/1511.00157
  5. 5.
    Brzozowski, J.A., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cyber. 21(4), 507–527 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brzozowski, J.A., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brzozowski, J.A., Shallit, J., Xu, Z.: Decision problems for convex languages. Inf. Comput. 209, 353–367 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brzozowski, J.A., Sinnamon, C.: Complexity of Prefix-Convex Regular Languages (2017, to appear). http://arxiv.org/abs/1605.06697
  9. 9.
    Brzozowski, J.A., Sinnamon, C.: Most Complex Non-Returning Regular Languages (2017). http://arxiv.org/abs/1701.03944
  10. 10.
    Brzozowski, J., Szykuła, M.: Complexity of suffix-free regular languages. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 146–159. Springer, Cham (2015). doi:10.1007/978-3-319-22177-9_12 CrossRefGoogle Scholar
  11. 11.
    Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13–27 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-25929-6_9 CrossRefGoogle Scholar
  13. 13.
    Eom, H.S., Han, Y.S., Jirásková, G.: State complexity of basic operations on non-returning regular languages. Fundam. Informaticae 144(2), 161–182 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ferens, R., Szykuła, M.: Complexity of bifix-free regular languages (2017). http://arxiv.org/abs/1701.03768
  15. 15.
    The GAP Group: GAP - Groups, Algorithms, and Programming (2016). http://www.gap-system.org
  16. 16.
    Iván, S.: Complexity of atoms, combinatorially. Inf. Process. Lett. 116(5), 356–360 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85780-8_34 CrossRefGoogle Scholar
  18. 18.
    Jirásková, G., Palmovský, M., Šebej, J.: Kleene closure on regular and prefix-free languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 226–237. Springer, Cham (2014). doi:10.1007/978-3-319-08846-4_17 Google Scholar
  19. 19.
    Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 511–607. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    McNaughton, R., Papert, S.A.: Counter-Free Automata. The MIT Press, Cambridge (1971). (M.I.T. Research Monograph No. 65)MATHGoogle Scholar
  21. 21.
    Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer, New York, USA (1997)Google Scholar
  22. 22.
    Šebej, J.: Reversal on regular languages and descriptional complexity. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 265–276. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39310-5_25 CrossRefGoogle Scholar
  23. 23.
    Szykuła, M., Wittnebel, J.: Syntactic complexity of bifix-free languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 201–212. Springer, Cham (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations