Advertisement

On the Conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\)

  • Paolo Massazza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10329)

Abstract

We prove that the class of the languages recognized by one-way deterministic 1-reversal bounded 1-counter machines is contained in \(\mathsf {RCM}\), a class of languages that has been recently introduced and that admits interesting properties. This is the first step to prove the conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\), which says that for any fixed integer k all the languages recognized by one-way deterministic 1-reversal bounded k-counter machines are in \(\mathsf {RCM}\). We recall that this conjecture implies that the generating function of a language in \(\mathcal {L}_{\mathsf {DFCM}}\) is holonomic.

Keywords

Linear Constraint Global State Regular Language Finite Automaton Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chomsky, N.: Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161 (1963)Google Scholar
  2. 2.
    Flajolet, P.: Ambiguity and transcendence. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 179–188. Springer, Heidelberg (1985). doi: 10.1007/BFb0015743 CrossRefGoogle Scholar
  3. 3.
    Flajolet, P.: Analytic models and ambiguity of context-free languages. Theor. Comput. Sci. 49, 283–309 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Stanley, R.: Differentiably finite power series. Eur. J. Combin. 1(2), 175–188 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bertoni, A., Massazza, P., Sabadini, N.: Holonomic generating functions and context free languages. Int. J. Found. Comput. Sci. 3(2), 181–191 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Massazza, P.: Holonomic functions and their relation to linearly constrained languages. RAIRO-Theor. Inf. Appl. 27(2), 149–161 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical report, Dep. of Computer Science, Univ. of Freiburg (2002)Google Scholar
  9. 9.
    Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003). doi: 10.1007/3-540-45061-0_54 CrossRefGoogle Scholar
  10. 10.
    Cadilhac, M., Finkel, A., McKenzie, P.: Affine parikh automata. RAIRO-Theor. Inf. Appl. 46(4), 511–545 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Castiglione, G., Massazza, P.: On a class of languages with holonomic generating functions. Theor. Comput. Sci. 658, 74–84 (2017)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388–399. Springer, Cham (2015). doi: 10.1007/978-3-319-17142-5_33 Google Scholar
  14. 14.
    Valiant, L., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3), 340–350 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Teoriche e Applicate - Sezione InformaticaUniversità degli Studi dell’InsubriaVareseItaly

Personalised recommendations