On the Conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\)

  • Paolo MassazzaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10329)


We prove that the class of the languages recognized by one-way deterministic 1-reversal bounded 1-counter machines is contained in \(\mathsf {RCM}\), a class of languages that has been recently introduced and that admits interesting properties. This is the first step to prove the conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\), which says that for any fixed integer k all the languages recognized by one-way deterministic 1-reversal bounded k-counter machines are in \(\mathsf {RCM}\). We recall that this conjecture implies that the generating function of a language in \(\mathcal {L}_{\mathsf {DFCM}}\) is holonomic.


Linear Constraint Global State Regular Language Finite Automaton Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chomsky, N.: Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161 (1963)Google Scholar
  2. 2.
    Flajolet, P.: Ambiguity and transcendence. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 179–188. Springer, Heidelberg (1985). doi: 10.1007/BFb0015743 CrossRefGoogle Scholar
  3. 3.
    Flajolet, P.: Analytic models and ambiguity of context-free languages. Theor. Comput. Sci. 49, 283–309 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Stanley, R.: Differentiably finite power series. Eur. J. Combin. 1(2), 175–188 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertoni, A., Massazza, P., Sabadini, N.: Holonomic generating functions and context free languages. Int. J. Found. Comput. Sci. 3(2), 181–191 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Massazza, P.: Holonomic functions and their relation to linearly constrained languages. RAIRO-Theor. Inf. Appl. 27(2), 149–161 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical report, Dep. of Computer Science, Univ. of Freiburg (2002)Google Scholar
  9. 9.
    Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003). doi: 10.1007/3-540-45061-0_54 CrossRefGoogle Scholar
  10. 10.
    Cadilhac, M., Finkel, A., McKenzie, P.: Affine parikh automata. RAIRO-Theor. Inf. Appl. 46(4), 511–545 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Castiglione, G., Massazza, P.: On a class of languages with holonomic generating functions. Theor. Comput. Sci. 658, 74–84 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388–399. Springer, Cham (2015). doi: 10.1007/978-3-319-17142-5_33 Google Scholar
  14. 14.
    Valiant, L., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3), 340–350 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Teoriche e Applicate - Sezione InformaticaUniversità degli Studi dell’InsubriaVareseItaly

Personalised recommendations