On the Conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10329)

Abstract

We prove that the class of the languages recognized by one-way deterministic 1-reversal bounded 1-counter machines is contained in \(\mathsf {RCM}\), a class of languages that has been recently introduced and that admits interesting properties. This is the first step to prove the conjecture \(\mathcal {L}_{\mathsf {DFCM}}\subsetneq \mathsf {RCM}\), which says that for any fixed integer k all the languages recognized by one-way deterministic 1-reversal bounded k-counter machines are in \(\mathsf {RCM}\). We recall that this conjecture implies that the generating function of a language in \(\mathcal {L}_{\mathsf {DFCM}}\) is holonomic.

References

  1. 1.
    Chomsky, N.: Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161 (1963)Google Scholar
  2. 2.
    Flajolet, P.: Ambiguity and transcendence. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 179–188. Springer, Heidelberg (1985). doi:10.1007/BFb0015743 CrossRefGoogle Scholar
  3. 3.
    Flajolet, P.: Analytic models and ambiguity of context-free languages. Theor. Comput. Sci. 49, 283–309 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Stanley, R.: Differentiably finite power series. Eur. J. Combin. 1(2), 175–188 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bertoni, A., Massazza, P., Sabadini, N.: Holonomic generating functions and context free languages. Int. J. Found. Comput. Sci. 3(2), 181–191 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Massazza, P.: Holonomic functions and their relation to linearly constrained languages. RAIRO-Theor. Inf. Appl. 27(2), 149–161 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical report, Dep. of Computer Science, Univ. of Freiburg (2002)Google Scholar
  9. 9.
    Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0_54 CrossRefGoogle Scholar
  10. 10.
    Cadilhac, M., Finkel, A., McKenzie, P.: Affine parikh automata. RAIRO-Theor. Inf. Appl. 46(4), 511–545 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Castiglione, G., Massazza, P.: On a class of languages with holonomic generating functions. Theor. Comput. Sci. 658, 74–84 (2017)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 388–399. Springer, Cham (2015). doi:10.1007/978-3-319-17142-5_33 Google Scholar
  14. 14.
    Valiant, L., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3), 340–350 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Teoriche e Applicate - Sezione InformaticaUniversità degli Studi dell’InsubriaVareseItaly

Personalised recommendations