Advertisement

From Hadamard Expressions to Weighted Rotating Automata and Back

  • Louis-Marie Dando
  • Sylvain LombardyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10329)

Abstract

This paper deals with the conversion of expressions denoting Hadamard series into weighted rotating automata. We prove that any algorithm converting rational series into one-way weighted automata can be extended to provide an algorithm which achieves our goal. We apply this to define the derivation and the follow automata of a Hadamard expression. Our method is also used to extend algorithms which perform the inverse conversion, up to some adjustment in order to fulfill some constraints.

References

  1. 1.
    Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comput. EC–12(2), 67–76 (1963)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caron, P., Flouret, M.: Glushkov construction for series: the non commutative case. Int. J. Comput. Math. 80(4), 457–472 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ésik, Z., Kuich, W.: Rationally additive semirings. J. UCS 8(2), 173–183 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Guillon, B.: Two-wayness: automata and transducers. Ph.D. thesis, Université Paris Diderot - Università degli studi di Milano, Paris (2016)Google Scholar
  5. 5.
    Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping automata. J. Comput. Syst. Sci. 78(2), 537–558 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lombardy, S.: Two-way representations and weighted automata. RAIRO - Theor. Inf. Appl. 50(4), 331–350 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theor. Comput. Sci. 332(1–3), 141–177 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pighizzini, G.: Two-way finite automata: old and recent results. Fundam. Inform. 126(2–3), 225–246 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of STOC, pp. 275–286. ACM (1978)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LaBRI UMR 5800, Université de Bordeaux INP Bordeaux, CNRSBordeauxFrance

Personalised recommendations