Aronson, A.R., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. J. Am. Med. Inf. Assoc. 17(3), 229–236 (2010)
CrossRef
Google Scholar
Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)
CrossRef
Google Scholar
Cho, H.C., Okazaki, N., Miwa, M., Tsujii, J.: Named entity recognition with multiple segment representations. Inf. Process. Manag. 49(4), 954–965 (2013)
CrossRef
Google Scholar
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: The 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)
Google Scholar
Friedman, M.J., Resick, P.A., Bryant, R.A., Strain, J., Horowitz, M., Spiegel, D.: Classification of trauma and stressor-related disorders in DSM-5. Depression and anxiety 28(9), 737–749 (2011). http://onlinelibrary.wiley.com/doi/10.1002/da.20845/full
CrossRef
Google Scholar
Gorrell, G., Jackson, R., Roberts, A., Stewart, R.: Finding negative symptoms of schizophrenia in patient records. In: Proceedings of the NLP Med Biol Work (NLPMedBio), Recent Adv Nat Lang Process (RANLP), pp. 9–17 (2013)
Google Scholar
Guo, J., Che, W., Wang, H., Liu, T.: Revisiting embedding features for simple semi-supervised learning. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 110–120 (2014)
Google Scholar
Insel, T.R.: The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry (2014). http://ajp.psychiatryonline.org/doi/abs/10.1176/appi.ajp.2014.14020138
Kazama, J., Makino, T., Ohta, Y., Tsujii, J.: Tuning support vector machines for biomedical named entity recognition. In: Proceedings of the ACL-02 Workshop on Natural Language Processing in the Biomedical Domain, vol. 3, pp. 1–8. Association for Computational Linguistics (2002)
Google Scholar
Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data (2001)
Google Scholar
Leaman, R., Doğan, R.I., Lu, Z.: DNorm: disease name normalization with pairwise learning to rank. Bioinformatics, p. btt474 (2013)
Google Scholar
Leaman, R., Lu, Z.: TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics 32(18), 2839–2846 (2016)
CrossRef
Google Scholar
McCoy, T.H., Castro, V.M., Roberson, A.M., Snapper, L.A., Perlis, R.H.: Improving prediction of suicide and accidental death after discharge from general hospitals with natural language processing. Jama Psychiatry 73(10), 1064–1071 (2016)
CrossRef
Google Scholar
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
CrossRef
Google Scholar
Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)
Google Scholar
Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised named-entity recognition: generating gazetteers and resolving ambiguity. In: Lamontagne, L., Marchand, M. (eds.) AI 2006. LNCS, vol. 4013, pp. 266–277. Springer, Heidelberg (2006). doi:10.1007/11766247_23
CrossRef
Google Scholar
Organization, W.H., et al.: Prevention of mental disorders: effective interventions and policy options: Summary report (2004). http://apps.who.int/iris/handle/10665/43027
Patel, R., Wilson, R., Jackson, R., Ball, M., Shetty, H., Broadbent, M., Stewart, R., McGuire, P., Bhattacharyya, S.: Cannabis use and treatment resistance in first episode psychosis: a natural language processing study. Lancet 385, S79 (2015)
CrossRef
Google Scholar
Pestian, J.P., Grupp-Phelan, J., Bretonnel Cohen, K., Meyers, G., Richey, L.A., Matykiewicz, P., Sorter, M.T.: A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department. Suicide and Life-threatening Behavior (2015)
Google Scholar
Proctor, E.K., Landsverk, J., Aarons, G., Chambers, D., Glisson, C., Mittman, B.: Implementation research in mental health services: an emerging science with conceptual, methodological, and training challenges. Adm. Policy Ment. Health Ment. Health Serv. Res. 36(1), 24–34 (2009)
CrossRef
Google Scholar
Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V.M., McCoy, T.H., Perlis, R.H.: Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Transl. Psychiatry 6(10), e921 (2016)
CrossRef
Google Scholar
Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L.W., Moody, G., Heldt, T., Kyaw, T.H., Moody, B., Mark, R.G.: Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39(5), 952 (2011)
CrossRef
Google Scholar
Tang, B., Feng, Y., Wang, X., Wu, Y., Zhang, Y., Jiang, M., Wang, J., Xu, H.: A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. J. Cheminform. 7(supplement 1), S8 (2015)
CrossRef
Google Scholar
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Language Processing, pp. 347–354. Association for Computational Linguistics (2005)
Google Scholar
Zhang, Y., Wang, J., Tang, B., Wu, Y., Jiang, M., Chen, Y., Xu, H.: UTH_CCB: A Report for SemEval 2014 Task 7 Analysis of Clinical Text. SemEval 2014, pp. 802–806 (2014)
Google Scholar