Skip to main content

Exploring Parameter Tuning for Analysis and Optimization of a Computational Model

  • Conference paper
  • First Online:
Advances in Artificial Intelligence: From Theory to Practice (IEA/AIE 2017)

Abstract

Computational models of human processes are used for many different purposes and in many different types of applications. A common challenge in using such models is to find suitable parameter values. In many cases, the ideal parameter values are those that yield the most realistic simulation results. However, there are situations in which the goodness of fit is not the main or only criterion to evaluate the appropriateness of a model, but where other aspects of the model behavior are also relevant. This is often the case when computational models are employed in real-life applications, such as mHealth systems. In this paper, we explore how parameter tuning techniques can be used to analyze the behavior of computational models systematically and to investigate the reasons behind the observed behavior. We study a computational model of psychosocial influences on physical activity behavior as an in-depth use case. In this particular case, an important measure of the feasibility of the model is the diversity in the simulation outcomes. This novel application of parameter tuning techniques for analysis and understanding of model behavior is transferable to other cases, and is therefore a valuable new approach in the toolset of computational modelers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oinas-Kukkonen, H.: Behavior change support systems: a research model and agenda. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 4–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13226-1_3

    Chapter  Google Scholar 

  2. Pitt, M., Myung, I.: When a good fit can be bad. Trends Cognit. Sci. 6(10), 421–425 (2002)

    Article  Google Scholar 

  3. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)

    Article  MATH  Google Scholar 

  4. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  5. Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R.: Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour. 28(2), 135–147 (2005)

    Article  Google Scholar 

  6. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99(3), 7280–7287 (2002)

    Article  Google Scholar 

  7. Sun, Q., Wu, S.: A crowd model with multiple individual parameters to represent individual behaviour in crowd simulation. In: Proceedings of the 28th ISARC (2011)

    Google Scholar 

  8. Bosse, T., Hoogendoorn, M., Klein, M.C., Treur, J., van der Wal, C.N., van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agents Multi Agent Syst. 27(1), 52–84 (2013)

    Article  Google Scholar 

  9. Tsai, J., Bowring, E., Marsella, S., Tambe, M.: Empirical evaluation of computational emotional contagion models. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, Kristinn R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 384–397. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23974-8_42

    Chapter  Google Scholar 

  10. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    Article  MATH  Google Scholar 

  13. Binitha, S., Siva Sathya, S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 13751 (2012)

    Google Scholar 

  14. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur. J. Oper. Res. 149(2), 268–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bandura, A.: Health promotion from the perspective of social cognitive theory. Psychol. Health 13, 623–649 (1998)

    Article  Google Scholar 

  16. Mollee, J.S., Wal, C.N.: A computational agent model of influences on physical activity based on the social cognitive theory. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, Martin K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 478–485. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44927-7_37

    Chapter  Google Scholar 

  17. Bandura, A.: Health promotion by social cognitive means. Health Educ. Behav. Off. Publ. Soc. Publ. Health Educ. 31(2), 143–164 (2004)

    Article  Google Scholar 

  18. Rovniak, L., Anderson, E., Winett, R., Stephens, R.: Social cognitive determinants of physical activity in young adults: a prospective structural equation analysis. Ann. Behav. Med. 24(2), 149–156 (2002)

    Article  Google Scholar 

  19. Plotnikoff, R., Lippke, S., Courneya, K., Birkett, N., Sigal, R.: Physical activity and social cognitive theory: a test in a population sample of adults with type 1 or type 2 diabetes. Appl. Psychol. 57(4), 628–643 (2008)

    Article  Google Scholar 

  20. Plotnikoff, R., Costigan, S., Karunamuni, N., Lubans, D.: Social cognitive theories used to explain physical activity behavior in adolescents: a systematic review and meta-analysis. Preventive Med. 56(5), 245–253 (2013)

    Article  Google Scholar 

  21. Klein, M.C.A., Manzoor, A., Middelweerd, A., Mollee, J.S., te Velde, S.J.: Encouraging physical activity via a personalized mobile system. IEEE Internet Comput. 19(4), 20–27 (2015)

    Article  Google Scholar 

  22. Frank, L.D., Sallis, J.F., Saelens, B.E., Leary, L., Cain, K., Conway, T.L., Hess, P.M.: The development of a walkability index: application to the neighborhood quality of life study. Br. J. Sports Med. 44(13), 924–933 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia S. Mollee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mollee, J.S., Araújo, E.F.M., Klein, M.C.A. (2017). Exploring Parameter Tuning for Analysis and Optimization of a Computational Model. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10351. Springer, Cham. https://doi.org/10.1007/978-3-319-60045-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60045-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60044-4

  • Online ISBN: 978-3-319-60045-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics