Abstract
Computational models of human processes are used for many different purposes and in many different types of applications. A common challenge in using such models is to find suitable parameter values. In many cases, the ideal parameter values are those that yield the most realistic simulation results. However, there are situations in which the goodness of fit is not the main or only criterion to evaluate the appropriateness of a model, but where other aspects of the model behavior are also relevant. This is often the case when computational models are employed in real-life applications, such as mHealth systems. In this paper, we explore how parameter tuning techniques can be used to analyze the behavior of computational models systematically and to investigate the reasons behind the observed behavior. We study a computational model of psychosocial influences on physical activity behavior as an in-depth use case. In this particular case, an important measure of the feasibility of the model is the diversity in the simulation outcomes. This novel application of parameter tuning techniques for analysis and understanding of model behavior is transferable to other cases, and is therefore a valuable new approach in the toolset of computational modelers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Oinas-Kukkonen, H.: Behavior change support systems: a research model and agenda. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 4–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13226-1_3
Pitt, M., Myung, I.: When a good fit can be bad. Trends Cognit. Sci. 6(10), 421–425 (2002)
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)
Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)
Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R.: Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour. 28(2), 135–147 (2005)
Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. 99(3), 7280–7287 (2002)
Sun, Q., Wu, S.: A crowd model with multiple individual parameters to represent individual behaviour in crowd simulation. In: Proceedings of the 28th ISARC (2011)
Bosse, T., Hoogendoorn, M., Klein, M.C., Treur, J., van der Wal, C.N., van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agents Multi Agent Syst. 27(1), 52–84 (2013)
Tsai, J., Bowring, E., Marsella, S., Tambe, M.: Empirical evaluation of computational emotional contagion models. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, Kristinn R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 384–397. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23974-8_42
Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)
Binitha, S., Siva Sathya, S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 13751 (2012)
Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur. J. Oper. Res. 149(2), 268–281 (2003)
Bandura, A.: Health promotion from the perspective of social cognitive theory. Psychol. Health 13, 623–649 (1998)
Mollee, J.S., Wal, C.N.: A computational agent model of influences on physical activity based on the social cognitive theory. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, Martin K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 478–485. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44927-7_37
Bandura, A.: Health promotion by social cognitive means. Health Educ. Behav. Off. Publ. Soc. Publ. Health Educ. 31(2), 143–164 (2004)
Rovniak, L., Anderson, E., Winett, R., Stephens, R.: Social cognitive determinants of physical activity in young adults: a prospective structural equation analysis. Ann. Behav. Med. 24(2), 149–156 (2002)
Plotnikoff, R., Lippke, S., Courneya, K., Birkett, N., Sigal, R.: Physical activity and social cognitive theory: a test in a population sample of adults with type 1 or type 2 diabetes. Appl. Psychol. 57(4), 628–643 (2008)
Plotnikoff, R., Costigan, S., Karunamuni, N., Lubans, D.: Social cognitive theories used to explain physical activity behavior in adolescents: a systematic review and meta-analysis. Preventive Med. 56(5), 245–253 (2013)
Klein, M.C.A., Manzoor, A., Middelweerd, A., Mollee, J.S., te Velde, S.J.: Encouraging physical activity via a personalized mobile system. IEEE Internet Comput. 19(4), 20–27 (2015)
Frank, L.D., Sallis, J.F., Saelens, B.E., Leary, L., Cain, K., Conway, T.L., Hess, P.M.: The development of a walkability index: application to the neighborhood quality of life study. Br. J. Sports Med. 44(13), 924–933 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mollee, J.S., Araújo, E.F.M., Klein, M.C.A. (2017). Exploring Parameter Tuning for Analysis and Optimization of a Computational Model. In: Benferhat, S., Tabia, K., Ali, M. (eds) Advances in Artificial Intelligence: From Theory to Practice. IEA/AIE 2017. Lecture Notes in Computer Science(), vol 10351. Springer, Cham. https://doi.org/10.1007/978-3-319-60045-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-60045-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60044-4
Online ISBN: 978-3-319-60045-1
eBook Packages: Computer ScienceComputer Science (R0)