Experimental Evaluation of the Understanding of Qualitative Probability and Probabilistic Reasoning in Young Children

  • Jean Baratgin
  • Giulianella Coletti
  • Frank Jamet
  • Davide PetturitiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10351)


De Finetti’s approach of an event of two levels of knowledge was recently proposed as the model of reference for psychology studies. We show that de Finetti’s qualitative probability framework seems to be “natural” to children aged from 3 to 4 as well as to account for children’s heuristic approach to probabilistic reasoning.


Experimental evaluation Young children Comparative degree of belief Qualitative probability Probabilistic reasoning 


  1. 1.
    Baratgin J., Douven I., Evans, J.St.B.T., Oaksford, M., Over, D., Polytzer, G.: The new paradigm and mental models. Trends Cogn. Sci. 19, 547–548 (2015)Google Scholar
  2. 2.
    Baratgin, J., Over, D.E., Politzer, G.: New psychological paradigm for conditionals and general de Finetti tables. Ind. Lang. 29, 73–84 (2014)Google Scholar
  3. 3.
    Baratgin, J., Politzer, G.: Logic, probability and inference: a methodology for a new paradigm. In: Macchi, L., et al. (eds.) Cognitive Unconscious and Human Rationality, pp. 119–142. MIT Press, Cambridge (2016)Google Scholar
  4. 4.
    Coletti, G.: Coherent qualitative probability. J. Math. Psych. 34, 297–310 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coletti, G., Scozzafava, R.: From conditional events to conditional measures: a new axiomatic approach. Ann. Math. Artif. Intell. 32, 373–392 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events. Theory Decis. 60, 137–174 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Finetti, B.: Sul significato soggettivo della probabilità. Fund. Mat. 17, 293–329 (1931)zbMATHGoogle Scholar
  8. 8.
    de Finetti, B.: Foresight: its logical laws, its subjective sources (1937). Translated in Kyburg, H.E., Smokler, H.E. (eds.) Studies in Subjective Probability, pp. 55–118. Wiley (1964)Google Scholar
  9. 9.
    Huber, B.L., Huber, O.: Development of the concept of comparative subjective probability. J. Exp. Child Psych. 44, 304–316 (1987)CrossRefGoogle Scholar
  10. 10.
    Kraft, C.H., Pratt, J.W., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math. Stat. 30, 408–419 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koopman, B.O.: The axioms and algebra of intuitive probability. Ann. Math. 41, 269–292 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Over, D.E., Baratgin, J.: The ‘defective’ truth table: its past, present, and future. In: Lucas, E., et al. (eds.) The Thinking Mind: The use of Thinking in Everyday Life. Psychology Press, Alberton (2016)Google Scholar
  13. 13.
    Scott, D.: Measurement structures and linear inequalities. J. Math. Psych. 1, 233–247 (1964)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wong, S.K.M., Yao, Y.Y., Bollmann, P., Burger, H.C.: Axiomatization of qualitative belief structure. IEEE Trans. Sys. Man Cyb. 21, 726–734 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean Baratgin
    • 1
  • Giulianella Coletti
    • 2
  • Frank Jamet
    • 3
  • Davide Petturiti
    • 4
    Email author
  1. 1.CHArt (Univesité Paris 8 & EPHE) & IJN (École Normale Supérieure)ParisFrance
  2. 2.Dip. Matematica e InformaticaUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.CHArt (Univesité Paris 8 & EPHE) & Université de Cergy-PontoiseParisFrance
  4. 4.Dip. EconomiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations