Advertisement

SemCoTrip: A Variety-Seeking Model for Recommending Travel Activities in a Composite Trip

  • Montassar Ben MessaoudEmail author
  • Ilyes Jenhani
  • Eya Garci
  • Toon De Pessemier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10350)

Abstract

Selecting appropriate activities, especially in multi-destinations trips, is a hard task that many travellers face each time they want to plan for a trip. With the budget and time limitations, travellers will try to select activities that best fit their personal interests. Most of existing travel recommender systems don’t focus on activities that a traveller might be interested in. In this paper, we go beyond the specific problem of combining regions in a composite trip to propose a variety-seeking model which is capable of providing travelllers with recommendations on what activities they can engage in when visiting different regions. A semantical hierarchical clustering-based model is proposed to guarantee diversity within the set of recommended activities. Experimental results on a real dataset have shown that the proposed approach helps the traveller to avoid doing the same or similar activities in a composite trip, thus, promoting less popular activities to be selected.

Keywords

Multi-destination trips Leisure activities Diversity Hierarchical clustering Ontology 

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Blanchard, E., Harzallah, M., Briand, H., Kuntz, P.: A typology of ontology-based semantic measures. In: Missikoff, M. Nicola, A.D. (eds.) EMOI-INTEROP. CEUR Workshop Proceedings, vol. 160 (2005). CEUR-WS.org
  3. 3.
    Burg, J.J., Ainsworth, J., Casto, B., Lang, S.-D.: Experiments with the Oregon trail knapsack problem. Electron. Notes Discrete Math. 1(B), 26–35 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Castells, P., Hurley, N.J., Vargas, S.: Novelty and Diversity in Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 881–918. Springer, US (2015). doi: 10.1007/978-1-4899-7637-6_26 CrossRefGoogle Scholar
  5. 5.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. 39(B), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gruber, T.R.: Towards principles for the design of ontologies used for knowledge sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer, The Netherlands (1993)Google Scholar
  7. 7.
    Haruechaiyasak, C., Tipnoe, C., Kongyoung, S., Damrongrat, C., Angkawattanawit, N.: A dynamic framework for maintaining customer profiles in e-commerce recommender systems. In: EEE, pp. 768–771. IEEE Computer Society (2005)Google Scholar
  8. 8.
    Herzog, D., Wörndl, W.: A travel recommender system for combining multiple travel regions to a composite trip. In: Bogers, T., Koolen, M., Cantador, I. (eds.) CBRecSys@RecSys. CEUR Workshop Proceedings, vol. 1245, pp. 42–48 (2014). CEUR-WS.org
  9. 9.
    Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  10. 10.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kriegel, H.-P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1(3), 231–240 (2011)Google Scholar
  12. 12.
    Lu, C., Laublet, P., Stankovic, M.: Travel attractions recommendation with knowledge graphs. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 416–431. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_27 CrossRefGoogle Scholar
  13. 13.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability (1966)Google Scholar
  14. 14.
    Moreno, A., Valls, A., Isern, D., Marin, L., Borràs, J.: Sigtur/e-destination: ontology-based personalized recommendation of tourism and leisure activities. Eng. Appl. AI 26(1), 633–651 (2013)Google Scholar
  15. 15.
    Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 2(1), 86–97 (2012)Google Scholar
  16. 16.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19, 17–30 (1989)CrossRefGoogle Scholar
  17. 17.
    Ruotsalo, T., Haav, K., Stoyanov, A., Roche, S., Fani, E., Deliai, R., Mäkelä, E., Kauppinen, T., Hyvönen, E.: Smartmuseum: a mobile recommender system for the web of data. J. Web Sem. 20, 50–67 (2013)CrossRefGoogle Scholar
  18. 18.
    Sanchez-Vilas, F., Ismailov, J., Sanchez, E.: The importance of diversity in profile-based recommendations: a case study in tourism. In: TouRS, Workshop on Tourism Recommender Systems, 9th ACM Conference on Recommender Systems, pp. 43–50. Austria, Vienna (2015)Google Scholar
  19. 19.
    Savir, A., Brafman, R.I., Shani, G.: Recommending improved configurations for complex objects with an application in travel planning. In: Yang, Q., King, I., Li, Q., Pu, P., Karypis, G. (eds.) RecSys, pp. 391–394. ACM (2013)Google Scholar
  20. 20.
    Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: Pu, P., Bridge, D.G., Mobasher, B., Ricci, F. (eds.) RecSys, pp. 259–266. ACM (2008)Google Scholar
  21. 21.
    West, J.D., Wesley-Smith, I., Bergstrom, C.T.: A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans. Big Data 2(2), 113–123 (2016)CrossRefGoogle Scholar
  22. 22.
    Zheng, L., Li, L., Hong, W., Li, T.: Penetrate: personalized news recommendation using ensemble hierarchical clustering. Expert Syst. Appl. 40(6), 2127–2136 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Montassar Ben Messaoud
    • 1
    Email author
  • Ilyes Jenhani
    • 2
  • Eya Garci
    • 3
  • Toon De Pessemier
    • 4
  1. 1.LARODEC, Institut Supérieur de Gestion de TunisLe BardoTunisia
  2. 2.Prince Mohammad Bin Fahd UniversityAl KhobarKingdom of Saudi Arabia
  3. 3.Institut Supérieur de Gestion de SousseSousseTunisia
  4. 4.iMinds - Ghent UniversityGhentBelgium

Personalised recommendations