Advertisement

Community Verification with Topic Modeling

Conference paper
  • 2.9k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10251)

Abstract

Different performance measurement metrics have been proposed to evaluate the performance of community detection algorithms, such as modularity, conductance, etc. However, there is few work which makes sense of a community, that is, explain what does the community do, what is the community’s interest. In this paper, we use topic modeling to capture the topics of users in the same community and verify a heuristic community detection algorithm by showing that the users in the communities share strong interests.

Keywords

Community detection Topic modeling LDA Social media 

Notes

Acknowledgments

This project is supported by NSF grant CNS #1218212.

References

  1. 1.
    Wagenseller, P., Wang, F.: Community detection algorithm evaluation using size and hashtags (2016). arXiv:1612.03362 [cs.SI]
  2. 2.
  3. 3.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: 1st Workshop on Social Media Analytics (SOMA) (2010)Google Scholar
  6. 6.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  7. 7.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop (2007)Google Scholar
  8. 8.
    Pathak, N., DeLong, C., Banerjee, A., Erickson, K.: Social topic models for community extraction. In: The 2nd SNA-KDD Workshop (2008)Google Scholar
  9. 9.
    Parthasarathy, S., Ruan, Y., Satuluri, V.: Community discovery in social networks: applications, methods and emerging trends. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 79–113. Springer, New York (2011)CrossRefGoogle Scholar
  10. 10.
    Cha, Y., Cho, J.: Social-network analysis using topic models. In: SIGIR (2012)Google Scholar
  11. 11.
    Lim, K.H., Datta, A.: A topological approach for detecting Twitter communities with common interests. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MSM/MUSE -2012. LNCS, vol. 8329, pp. 23–43. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45392-2_2 CrossRefGoogle Scholar
  12. 12.
    Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7303), 761–764 (2010)CrossRefGoogle Scholar
  13. 13.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: ICDM (2012)Google Scholar
  14. 14.
    Dunbar, R.I.M.: Do online social media cut through the constraints that limit the size of offline social networks? R. Soc. Open Sci. 3, 150292 (2016)CrossRefGoogle Scholar
  15. 15.
    Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., Padmanabhan, K., Samatova, N.: Community detection in large-scale networks: a survey and empirical evaluation. WIREs Comput. Stat. 6, 426–439 (2014)CrossRefGoogle Scholar
  17. 17.
    Yin, Z., Gao, L., Gu, Q., Han, J.: Latent community topic analysis: integration of community discovery with topic modeling. ACM Trans. Intell. Syst. Technol. 3, 63 (2012)CrossRefGoogle Scholar
  18. 18.
    Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.-L.: Shaping communities out of triangles. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012 (2012)Google Scholar
  19. 19.
    Hannachi, L., Asfari, O., Benblidia, N., Bentayeb, F., Kabachi, N., Boussaid, O.: Community extraction based on topic-driven-model for clustering users tweets. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 39–51. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35527-1_4 CrossRefGoogle Scholar
  20. 20.
    Jaffali, S., Jamoussi, S., Hamadou, A.B.: Grouping like-minded users based on text and sentiment analysis. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 83–93. Springer, Cham (2014). doi: 10.1007/978-3-319-11289-3_9 Google Scholar
  21. 21.
    Yang, S.-H., Long, B., Smola, A., Sadagopan, N., Zheng, Z., Zha, H.: Like like alike: joint friendship and interest propagation in social networks. In: Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 537–546, 2011Google Scholar
  22. 22.
    Sachan, M., Contractor, D., Faruquie, T.A., Venkata Subramaniam, L.: Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st International Conference on World Wide Web, pp. 331–340 (2012)Google Scholar
  23. 23.
    Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing Twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20161-5_34 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematical and Natural SciencesArizona State UniversityTempeUSA

Personalised recommendations