Abstract
Oenococcus oeni and other heterofermentative lactic acid bacteria from wine are able to grow at the expense of hexose and pentose sugars using the phosphoketolase pathway. Fermentation of hexoses is limited by low activity of the enzymes for ethanol production. Erythritol is formed as an alternative product, but the enzymes of the pathway are mostly unknown. Presence of fructose, citrate, pyruvate or O2 results in a shift of hexose fermentation to acetate at the expense of ethanol. O. oeni and other lactic acid bacteria are able to degrade organic acids of wine such as citrate, l-malate, pyruvate, l-tartrate and fumarate. The pathways for tartrate and fumarate degradation are known only in parts. Identification of the genes, enzymes and carriers for the alternative substrates, and regulation of the fermentation pathways is important for understanding metabolism of O. oeni (and other lactic acid bacteria) and their adaptation to survival in wine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amachi T, Imamoto S, Yoshizumi H, Senoh S (1970) Structure and synthesis of a novel pantothenic acid derivative, the microbial growth factor from tomato juice. Tetrahedron Lett 56:4871–4874
Bartowsky FJ, Henschke PA (2004) The ‘buttery’ attribute of wine – diacetyl – desirability, spoilage and beyond. Int J Food Microbiol 96:235–252
Beelman RB, Gavin A III, Keen RM (1977) A new strain of Leuconostoc oenos for induced malolactic fermentation in eastern wines. Am J Enol Vitic 28:159–165
Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ (2012) Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially relevant pathways. BMC Genomis 13:373
Caspritz G, Radler F (1983) Malolactic enzyme of Lactobacillus plantarum. J Biol Chem 258:4907–4910
Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130
Coucheney F, Desroche N, Bou M, Tourdot-Marechal R, Dulau L, Guzzo J (2005) A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters. Int J Food Microbiol 105:463–470
Dittrich HH, Großmann M (2005) Handbuch der Lebensmitteltechnologie – Mikrobiologie des Weines. Ulmer, Stuttgart
Drinan DF, Tobin S, Cogan TM (1976) Citric acid metabolism in hetero- and homofermentative lactic acid bacteria. Appl Environ Microbiol 31:481–486
Garvie EI (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447
Garvie EI (1986) Genus Leuconostoc. In: Sneath PHA, Mair NS, Sharpe MA, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1071–1075
Grimaldi A, Bartowski E, Jiranek V (2005) A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int J Food Microbiol 105:233–244
Hache C, Cachon R, Wache Y, Belguendoouz T, Riondet C, Deraedt A, Divies C (1999) Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides spp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris. Syst Appl Microbiol 22:507–513
Hahn G, Kaup B, Bringer-Mayer S, Sahm H (2003) A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning of the gene. Arch Microbiol 179:1001–1107
Kim OB, Unden G (2007) The l-tartrate/succinate antiporter TtdT (YgjE) of l-tartrate fermentation in Escherichia coli. J Bacteriol 189:1597–1603
Kim OB, Richter H, Zaunmüller T, Graf S, Unden G (2011) Role of secondary transporters and Phosphotransferase systems in glucose transport by Oenococcus oeni. J Bacteriol 193:6902–6911
Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie Van Leeuwenhoek 82:3–27
Koo OK, Jeong DW, Lee JM, Kim MJ, Lee JH, Chang HC, Kim JH, Lee HJ (2005) Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol Lett 27:505–510
Liu SQ (2002) A review: malolactic fermentation in wine – beyond deacidification. J Appl Microbiol 92:589–601
Llaubères RM, Richard B, Lonvaud A, Dubourdieu D, Fournet B (1990) Structure of an exocellular β-d-glucan from Pediococcus sp. a wine lactic bacteria. Carbohydr Res 203:103–107
Lolkema JS, Poolman B, Konings WN (1995) Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr 27:467–473
Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331
Maicas S, Ferrer S, Pardo I (2002) NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology 148:325–332
Martin M, Magni C, Lopez P, de Mendoza D (2000) Transcriptional control of the citrate-inducible citMCDEFGRP operon, encoding genes involved in citrate fermentation in Leuconostoc paramesenteroides. J Bacteriol 182:3904–3912
Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN (1995) Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem 270:25370–25376
Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol 178:2178–2185
Mayer K (1974) Nachteilige Auswirkungen auf die Weinqualität bei ungünstig verlaufendem biologischen Säureabbau. Schweiz Z Obst- u, Weinb 110:385–391
Medina de Figueroa R, Alvarez F, Pesce de Ruiz Holgado A, Oliver G, Sesma F (2000) Citrate utilization by homo- and heterofermentative lactobacilli. Microbiol Res 154:313–320
Meile L, Rohr LM, Geissmann TA, Herenberger M, Teuber M (2001) Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183:2929–2936
Mesas JM, Rodriguez MC, Alegre MT (2012) Basic characterization and partial purification of β-glucosidase from cell-free extracts of Oenococcus oeni ST81. Appl Microbiol 55:247–255
Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475
Moreno-Arribas MV, Polo MC (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit Rev Food Sci Nutr 45:265–286
Nielsen JC, Richelieu M (1999) Control of flavour development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65:740–745
Nuraida L, Grigolava I, Owens JD, Campbell-Platt G (1992) Oxygen and pyruvate as external electron acceptors for Leuconostoc spp. J Appl Bacteriol 72:517–522
Ortiz ME, Bleckwedel J, Raya RR, Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726
Otgonbayar GE, Eom HJ, Kim BS, Ko JH, Han NS (2011) Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi. J Microbiol Biotechnol 21:968–971
Pilone GJ, Kunkee RE (1976) Stimulatory effect of malo-lactic fermentation on the growth rate of Leuconostoc oenos. Appl Environ Microbiol 32:405–408
Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037
Radler F (1958) Untersuchung des biologischen Säureabbaus im Wein. III. Die Energiequelle der Äpfelsäure-abbauenden Bakterien. Arch Microbiol 31:224–230
Radler F (1966) Die mikrobiologischen Grundlagen des Säureabbaus im Wein. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 120:237–287
Radler F (1986) Das in den USA zugelassene Säuerungsmittel Fumarsäure und seine Wirkung – Übersicht. Wein-Wiss 41:47–50
Radler F, Brohl K (1984) The metabolism of several carboxylic acids by lactic acid bacteria. Z Lebensm Unters Forsch 179:228–231
Radler F, Yannissis C (1972) Weinsäureabbau bei Milchsäurebakterien. Arch Microbiol 82:219–238
Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol 176:4899–4905
Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31
Richter H, Hamann I, Unden G (2003a) Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Arch Microbiol 179:227–233
Richter H, De Graaf AA, Hamann I, Unden G (2003b) Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni. Arch Microbiol 180:465–370
Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55:197–207
Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891
Salema M, Lolkema JS, San Romao MV, Loureiro Dias MC (1996) The proton motive force generated in Leuconostoc oenos by l-malate fermentation. J Bacteriol 178:3127–3132
Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466
Schmitt P, Vasseur C, Palip V, Huang DQ, Divies C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Appl Microbiol Biotechnol 47:715–718
Schneider K, Kastner CN, Meyer M, Wessel M, Dimroth P, Bott M (2002) Identification of a gene cluster in Klebsiella pneumoniae which includes citX, a gene required for biosynthesis of the citrate lyase prosthetic group. J Bacteriol 184:2439–2446
Sender PD, Martin MG, Peiru S, Magni C (2004) Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family. FEBS Lett 570:17–22
Starrenburg MJ, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540
Stolz P, Vogel RF, Hammes WP (1995) Utilization of electron acceptors by lactobacilli isolated from sour dough. Z Lebensm Unters Forsch 201:402–410
Tonon T, Lonvaud-Funel A (2000) Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J Appl Microbiol 2000:526–531
Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 152:653–661
Unden G, Zaunmüller T (2009) Metabolism of sugars and organic acids by lactic acid bacteria from wine and must. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Heidelberg, pp 135–147
Veiga-Da-Cunha M, Firme P, San Romao MV, Santos H (1992) Application of [13C] nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl Environ Microbiol 58:2271–2279
Veiga-Da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948
Wagner N, Tran QH, Richter H, Selzer PM, Unden G (2005) Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation. Appl Environ Microbiol 71:4966–4971
Winterhalter P, Skouroumounis GK (1997) Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. In: Sheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 74–99
Würdig W, Woller R (1989) Handbuch der Lebensmitteltechnologie – Chemie des Weins. Ulmer, Stuttgart
Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R (2005) The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region on the genome and both are useful for strain identification. FEMS Microbiol Lett 246:251–257
Zaunmüller T, Unden G (2009) Transport of sugars and sugar alcohols by lactic acid bacteria growing in wine and related media. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Heidelberg, pp 149–163
Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429
Zhang DS, Lovitt RW (2005) Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. J Appl Microbiol 99:565–572
Acknowledgement
The work in the authors’ laboratory was supported by Innovationsstiftung Rheinland-Pfalz (Grant No. 15202-38 62 61/675). Part of the information is based on a review by Zaunmüller et al. (2006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Unden, G., Eirich, T., Richter, H. (2017). Metabolism and Transport of Sugars and Organic Acids by Lactic Acid Bacteria from Wine and Must. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-60021-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60020-8
Online ISBN: 978-3-319-60021-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)