Skip to main content

Amino Acid Metabolisms and Production of Biogenic Amines and Ethyl Carbamate

  • Chapter
  • First Online:
Biology of Microorganisms on Grapes, in Must and in Wine

Abstract

In winemaking process, a wide range of volatile and non-volatile compounds originate from microbial catabolism of amino acids. Among these catabolites, biogenic amines, low molecular weight organic bases produced by decarboxylation of their respective free precursor amino acids, are receiving much attention in wine science because of their potential implication for human health. This chapter, after a brief overview on the occurrence of biogenic amines in wines, deals with the role played by yeasts and lactic acid bacteria in the formation and accumulation of these molecules during winemaking, giving emphasis to the most frequently found amines (histamine, tyramine and putrescine) and their physiological significance in bacterial cells. Moreover, the most suitable methods to detect biogenic amine-producing lactic acid bacteria or to quantify biogenic amine in wine as well as strategies to reduce biogenic amine content in wine are reported. Finally, a note on the formation of ethyl carbamate, a carcinogen compound originating in wine through a non-enzymatic reaction between ethanol and microbial catabolites containing a carbamyl group, is furnished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudelo-Romero P, Bortolloti C, Salomé Pais M, Fernández Tiburcio A, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119

    Article  CAS  PubMed  Google Scholar 

  • Alcaide-Hidalgo JM, Moreno-Arribas MV, Martín-Álvarez PJ, Polo MC (2007) Influence of malolactic fermentation, postfermentative treatments and ageing with lees on nitrogen compounds of red wines. Food Chem 103:572–581

    Article  CAS  Google Scholar 

  • Alvarez MA, Moreno-Arribas MV (2014) The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol 39:146–155

    Article  CAS  Google Scholar 

  • Amghouz Z, Ancín-Azpilicueta C, Burusco KK, García JR, Khainakov SA, Luquin A, Nieto R, Garrido JJ (2014) Biogenic amines in wine: individual and competitive adsorption on a modified zirconium phosphate. Microporous Mesoporous Mater 197:130–139

    Article  CAS  Google Scholar 

  • Anli RE, Vural N, Ylamz S, Vural YH (2004) The determination of biogenic amines in Turkish red wines. J Food Compos Anal 17:53–62

    Article  CAS  Google Scholar 

  • Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MP, Prats-Moya MS (2012) Free amino acids and biogenic amines in Alicante Monastrell wines. Food Chem 135:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Azevedo Z, Couto JA, Hogg T (2002) Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levels in a spoiled fortified wine. Lett Appl Microbiol 34:32–36

    Article  CAS  PubMed  Google Scholar 

  • Bach B, Le Quere S, Vuchot P, Grinbaum M, Barnavon L (2012) Validation of a method for the analysis of biogenic amines: histamine instability during wine sample storage. Anal Chim Acta 732:114–119

    Article  CAS  PubMed  Google Scholar 

  • Bauza T, Blaise A, Daumas F, Cabanis JC (1995) Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhone by high-performance liquid chromatography with precolumn derivatisation and fluorimetric detection. J Chromatogr A 707:373–379

    Article  CAS  Google Scholar 

  • Busto O, Guasch J, Borrull F (1996) Biogenic amines in wine: a review of analytical methods. J Int Sci Vigne Vin 30:85–101

    CAS  Google Scholar 

  • Capozzi V, Ladero V, Beneduce L, Fernández M, Alvarez MA, Benoit B, Laurent B, Grieco F, Spano G (2011) Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol 28:434–439

    Article  CAS  PubMed  Google Scholar 

  • Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Grieco F, Spano G (2012) Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol 3:1–6

    Google Scholar 

  • Caruso M, Fiore C, Contursi M, Salzano G, Paparella A, Romano P (2002) Formation of biogenic amines as criteria for selection of wine yeasts. World J Microbiol Biotechnol 18:159–163

    Article  CAS  Google Scholar 

  • Cejudo-Bastante MJ, Sonni F, Chinnici F, Versari A, Perez-Coello MS, Riponi C (2010) Fermentation of sulphite-free white musts with added lysozyme and oenological tannins: nitrogen consumption and biogenic amines composition of final wines. LWT-Food Sci Technol 43:1501–1507

    Article  CAS  Google Scholar 

  • Costantini A, Cersosimo M, del Prete V, Garcia-Moruno E (2006) Production of biogenic amine by lactic acid bacteria, screening by PCR, thin layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must. J Food Prot 69:391–396

    Article  CAS  PubMed  Google Scholar 

  • Costantini A, Vaudano E, del Prete V, Danei M, García-Moruno E (2009) Biogenic amine production by contaminating bacteria found in starter preparations used in winemaking. J Agric Food Chem 57:10664–10669

    Article  CAS  PubMed  Google Scholar 

  • Coton E, Coton M (2005) Multiplex PCR for colony direct detection of gram-positive histamine- and tyramine-producing bacteria. J Microbiol Methods 63:296–304

    Article  CAS  PubMed  Google Scholar 

  • Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998a) Histamine-producing lactic acid bacteria in wines: early detection, frequency and distribution. Am J Enol Vitic 49:199–204

    CAS  Google Scholar 

  • Coton E, Rollan G, Lonvaud-Funel A (1998b) Histidine carboxylase of Leuconostoc oenos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J Appl Microbiol 84:143–151

    Article  CAS  PubMed  Google Scholar 

  • Coton M, Coton E, Lucas P and Lonvaud A (2004) Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine producing bacteria. Food Microbiol 21: 125–130.

    Google Scholar 

  • Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desmarais C, Lonvaud-Funel A, Lucas P, Coton E (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Coulon J, Husnik JI, Inglis DL, van der Merwe GK, Lonvaud A, Erasmus DJ, van Vuuren HJJ (2006) Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic 57:113–124

    CAS  Google Scholar 

  • Del Campo G, Lavado I, Dueñas M, Irastorza A (2000) Histamine production by some lactic acid bacteria isolated from ciders. Food Sci Technol Int 6:117–121

    Article  Google Scholar 

  • Driessen AJM, Poolman B, Kiewiet R, Konings WN (1987) Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc Natl Acad Sci USA 84:6093–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (EFSA) (2011) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J 9:1–93

    Google Scholar 

  • Garai G, Dueñas MT, Irastorza A, Moreno-Arribas MV (2007) Biogenic amine production by lactic acid bacteria isolated from cider. Lett Appl Microbiol 45:473–478

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Moruno E, Muñoz R (2012) Does Oenococcus oeni produce histamine? Int J Food Microbiol 157:121–129

    Article  CAS  PubMed  Google Scholar 

  • García-Ruiz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV (2011) Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol 148:115–120

    Article  PubMed  Google Scholar 

  • Gardini F, Zaccarelli A, Belletti N, Faustini F, Cavazza A, Martuscelli M, Mastrocola D, Suzzi G (2005) Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control 16:609–616

    Article  CAS  Google Scholar 

  • Genbauffe FS, Cooper TG (1986) Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol Cell Biol 6:3954–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glória MBA, Watson BT, Simon-Sarkadi L, Daeschel MA (1998) A survey of biogenic amines in Oregon Pinot noir and Cabernet Sauvignon wines. Am J Enol Vitic 49:279–282

    Google Scholar 

  • Granchi L, Paperi R, Rosellini D, Vincenzini M (1998) Strain variation of arginine catabolism among malolactic Oenococcus oeni strains of wine origin. Ital J Food Sci 4:351–357

    Google Scholar 

  • Granchi L, Talini D, Rigacci S, Guerrini S, Berti A, Vicenzini M (2006) Detection of putrescine-producer Oenococcus oeni strains by PCR. In: 8th Symposium on lactic acid bacteria, The Netherlands

    Google Scholar 

  • Guerrini S, Mangani S, Granchi L, Vincenzini M (2002) Biogenic amine production by Oenococcus oeni. Curr Microbiol 44:374–378

    Article  CAS  PubMed  Google Scholar 

  • Hackert ML, Carroll DW, Davidson L, Kim S-O, Momany C, Vaaler GL, Zhang L (1994) Sequence of ornithine-decarboxylase from Lactobacillus sp. strain 30a. J Bacteriol 176:7391–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halász A, Baráth A, Simon-Sarkadi L, Holzapfel W (1994) Biogenic amines and their production by microrganisms in food. Trends Food Sci Technol 5:42–49

    Article  Google Scholar 

  • Henríquez-Aedo K, Durán D, Garcia A, Hengst M, Aranda M (2016) Identification of biogenic amine-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of Chilean wines. LWT-Food Sci Technol 68:183–189

    Article  Google Scholar 

  • Herbert P, Cabrita MJ, Ratola N, Laureano O, Alves A (2005) Free amino acid and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sib-region and vintage. J Food Eng 66:315–322

    Article  Google Scholar 

  • Hernández-Orte P, Lapeña AC, Peña-Gallego A, Astrain J, Baron C, Pardo I, Polo L, Ferrer S, Cacho J, Ferreira V (2008) Biogenic amine determination in wine fermented in oak barrels: factors affecting formation. Food Res Int 41:697–706

    Article  Google Scholar 

  • Jiao Z, Dong Y, Chen Q (2014) Ethyl carbamate in fermented beverages: presence, analytical chemistry, formation mechanism, and mitigation proposals. Compr Rev Food Sci Food Saf 13:611–626

    Article  CAS  Google Scholar 

  • Kemsawasd V, Viana T, Ardö Y, Arneborg N (2015) Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation. Appl Microbiol Biotechnol 99:10191–10207

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Fernández M, Calles-Enríquez M, Sánchez-Llana E, Cañedo E, Martín MC, Alvarez MA (2012) Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol 30:132–138

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Pardo I (2005a) Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol 99:580–586

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Polo L, Pardo I (2005b) Biogenic amines in wines from three Spanish regions. J Agric Food Chem 53:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Pardo I, Ferrer S (2006) Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiol Lett 260:84–90

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Pardo I (2007a) Biogenic amine production by lactic acid bacteria acetic bacteria and yeast isolated from wine. Food Control 18:1569–1574

    Article  CAS  Google Scholar 

  • Landete JM, Pardo I, Ferrer S (2007b) Tyramine and Phenylethylamine production among lactic acid bacteria isolated from wine. Int J Food Microbiol 115:364–368

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, de las Rivas B, Marcobal A, Mu oz R (2007c) Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int J Food Microbiol 117:258–269

    Article  CAS  PubMed  Google Scholar 

  • Le Jeune C, Lonvaud-Funel A, ten Brink B, Hofstra H, Van der Vossen JMBM (1995) Development of a detection system for histamine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol 78:316–326

    Article  PubMed  Google Scholar 

  • Lehtonen P (1996) Determination of amines and amino acids in wine – a review. Am J Enol Vitic 47:127–133

    CAS  Google Scholar 

  • Leitão MC, Marques AP, San Romão MV (2005) A survey of biogenic amines in commercial Portuguese wines. Food Control 16:199–204

    Article  Google Scholar 

  • Liu S-Q, Pilone (1998) A review: arginine metabolism in wine lactic acid bacteria and its practical significance. J Appl Microbiol 84:315–327

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Rev 199:9–13

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A (1994) Histamine production by wine lactic acid bacteria: isolation of a histamine-producing strain of Leuconostoc oenos. J Appl Bacteriol 77:401–407

    Article  CAS  PubMed  Google Scholar 

  • López I, Santamaría P, Tenorio C, Garito P, Gutiérrez AR, López R (2009) Evaluation of lysozyme to control vinification process and histamine production in Rioja wines. J Microbiol Biotechnol 19:1005–1012

    Article  PubMed  Google Scholar 

  • López R, Tenorio C, Gutiérrez AR, Garde-Cerdán T, Garijo P, González-Arenzana L, López-Alfaro I, Santamaria P (2012) Elaboration of Tempranillo wines at two different pHs. Influence on biogenic amine contents. Food Control 25:583–590

    Article  Google Scholar 

  • Lucas PM, Wolken WAM, Claisse O, Lolkema JS, Lonvaud-Funel A (2005) Histamine-producing pathway encoded on a unstable plasmid in 0006. Appl Environ Microbiol 71:1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A (2007) Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153:2221–2230

    Article  CAS  PubMed  Google Scholar 

  • Lucas PM, Claisse O, Lonvaud-Funel A (2008a) High Frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl Environ Microbiol 74:811–817

    Google Scholar 

  • Lucas PM, Coton M, Claisse O, Lonvaud-Funel A, Coton E (2008b) Evidence for horizontal transfer of the histamine-producing pathway genes in lactic acid bacteria. Unpublished. Accesions DQ132887, DQ132888, DQ132889, DQ132890, and DQ132891

    Google Scholar 

  • Manetta AC, Di Giuseppe L, Tofalo R, Martuscelli G, Schirone M, Giammarco M, Suzzi G (2016) Evaluation of biogenic amines in wine: determination by an improved HPLC-PDA method. Food Control 62:351–356

    Article  CAS  Google Scholar 

  • Mangani S, Guerrini S, Granchi L, Vincenzini M (2005) Putrescine accumulation in wine: role of Oenococcus oeni. Curr Microbiol 51:6–10

    Article  CAS  PubMed  Google Scholar 

  • Mangani S, Galli C, Guerrini S, Granchi L, Vincenzini M (2006) Sviluppo delle popolazioni microbiche ed accumulo di ammine biogene in vinificazione. Vignevini 6:79–83

    Google Scholar 

  • Marcobal A, de las Rivas B, Moreno-Arribas MV, Mu oz R (2004) Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83. FEMS Microbiol Lett 239:213–220

    Article  CAS  PubMed  Google Scholar 

  • Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R (2005) Multiplex-PCR method for the simultaneous detection of lactic acid bacteria producing histamine, tyramine and putrescine, three major biogenic amines. J Food Prot 68:874–878

    Article  CAS  PubMed  Google Scholar 

  • Marcobal A, Martín-Álvarez PJ, Polo MC, Mu oz R, Moreno-Arribas MV (2006) Formation of biogenic amines throughout the industrial manufacture of red wine. J Food Prot 69:397–404

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Pinilla O, Guadalupe Z, Hernández Z, Ayestarán B (2013) Amino acids and biogenic amines in red varietal wines: the role of grape variety, malolactic fermentation and vintage. Eur Food Res Technol 237:887–895

    Article  Google Scholar 

  • Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E, Carrau F (2013) Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem 141:2513–2521

    Article  CAS  PubMed  Google Scholar 

  • Meléndez ME, Sarabia LA, Ortiz MC (2016) Distribution free methods to model the content of biogenic amines in Spanish wines. Chemometr Intell Lab 155:191–199

    Article  Google Scholar 

  • Mira de Ordu AR, Liu S-Q, Patchett ML, Pilone GJ (2000) Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiol Lett 183:31–35

    Article  Google Scholar 

  • Momany C, Ghosh R, Hackert ML (1995) Structural motifs for pyridoxal-5 -phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Prot Sci 4:849–854

    Article  CAS  Google Scholar 

  • Moolenar D, Bosscher JS, ten Brink B, Driessen AJM, Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175:2864–2870

    Article  Google Scholar 

  • Moreno-Arribas MV, Lonvaud-Funel A (1999) Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol Lett 180:55–60

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arribas MV, Lonvaud-Funel A (2001) Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol Lett 195:103–107

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arribas MV, Torlois S, Joyeux A, Bertrand A, Lovaud-Funel A (2000) Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J Appl Microbiol 88:584–593

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arribas MV, Polo MC, Jorganes F, Munoz R (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84:117–123

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez JL, Troncoso AM, Del Carmen García-Parrilla M, Callejón RM (2016) Recent trends in the determination of biogenic amines in fermented beverages – a review. Anal Chim Acta 939:10–25

    Article  PubMed  Google Scholar 

  • Ough CS, Crowell EA, Gutlove LBR (1988) Carbamyl compound reactions with ethanol. Am J Enol Vitic 39:239–242

    CAS  Google Scholar 

  • Ough CS, Huang Z, An D, Stevens D (1991) Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: effects on urea excretion and readsorption. Am J Enol Vitic 41:26–40

    Google Scholar 

  • Polo L, Ferrer S, Peña-Gallego A, Hernández-Orte P, Pardo I (2011) Biogenic amine synthesis in high quality Tempranillo wines. Relationship with lactic acid bacteria and vinification conditions. Ann Microbiol 61:191–198

    Article  CAS  Google Scholar 

  • Poolman B, Driessen AJM, Konings (1987) Regulation of the arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J Bacteriol 169:5597–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramateftaki PV, Metafa M, Kallithraka S, Lanaridis P (2006) Evolution of malolactic bacteria and biogenic amines during spontaneous malolactic fermentations in a Greek winery. Lett Appl Microbiol 43:155–160

    Article  CAS  PubMed  Google Scholar 

  • Preti R, Antonelli ML, Bernacchia R, Vinci G (2015) Fast determination of biogenic amines in beverages by a core-shell particle column. Food Chem 187:555–562

    Article  CAS  PubMed  Google Scholar 

  • Preti R, Vieri S, Vinci G (2016) Biogenic amine profiles and antioxidant properties of Italian red wines from different price categories. J Food Compos Anal 46:7–14

    Article  CAS  Google Scholar 

  • Proestos C, Loukatos P, Komaitis M (2008) Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem 106:1218–1224

    Article  CAS  Google Scholar 

  • Remize F, Gaudin A, Kong Y, Guzzo J, Alexandre H, Krieger S, Guilloux-Benatier M (2006) Oenococcus oeni preference for peptides: qualitative and quantitative analysis of nitrogen assimilation. Arch Microbiol 185:459–469

    Article  CAS  PubMed  Google Scholar 

  • Romero R, Sánchez-Vi as M, Gázquez D, Bagur MG (2002) Characterization of selected Spanish table wine samples according to their biogenic amine content from liquid chromatographic determination. J Agric Food Chem 50:4713–4717

    Article  CAS  PubMed  Google Scholar 

  • Rosi I, Nannelli F, Giovani G (2009) Biogenic amine production by Oenococcus oeni during malolactic fermentation of wines obtained using different strains of Saccharomyces cerevisiae. LWT Food Sci Technol 42:525–530

    Article  CAS  Google Scholar 

  • Sciancalepore AG, Mele E, Arcadio V, Reddavide F, Grieco F, Spano G, Lucas P, Mita G, Pisignano D (2013) Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines. Food Microbiol 35:10–14

    Article  CAS  PubMed  Google Scholar 

  • Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231

    Article  CAS  PubMed  Google Scholar 

  • Smit AY, du Toit WJ, Stander M, du Toit M (2013) Evaluating the influence of maceration practices on biogenic amine formation in wine. LWT-Food Sci Technol 53:297–307

    Article  CAS  Google Scholar 

  • Soufleros EH, Barrios M, Bertrand A (1998) Correlation between the content of biogenic amines and other wine compounds. Am J Enol Vitic 49:266–278

    CAS  Google Scholar 

  • Soufleros EH, Bouloumpasi E, Zotou A, Loukou Z (2007) Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration. Food Chem 101:704–716

    Article  CAS  Google Scholar 

  • ten Brink B, Damnik C, Joosten HMLJ, JHJ H i’t V (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:73–84

    Article  PubMed  Google Scholar 

  • Torrea D, Ancin C (2001) Influence of yeast strain on biogenic amines content in wines: relationship with the utilization of amino acids during fermentation. Am J Enol Vitic 52:185–190

    Google Scholar 

  • Tuberoso CIG, Congiu F, Serreli G, Mameli S (2015) Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food Chem 175:29–35

    Article  CAS  PubMed  Google Scholar 

  • Vitali J, Carroll D, Chaudhry G, Hackert (1999) Three-dimensional structure of the Gly121Tyr dimeric form of ornithine decarboxylase from Lactobacillus 30a. Acta Crystallogr D55:1978–1985

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Vincenzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vincenzini, M., Guerrini, S., Mangani, S., Granchi, L. (2017). Amino Acid Metabolisms and Production of Biogenic Amines and Ethyl Carbamate. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_10

Download citation

Publish with us

Policies and ethics