Skip to main content

Essentials of Fractional Calculus

  • Chapter
  • First Online:
Book cover Fractional and Multivariable Calculus

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 122))

  • 1920 Accesses

Abstract

In recent decades, the field of fractional calculus has attracted interest of researchers in several areas including mathematics, physics, chemistry, engineering, and even finance and social sciences.

This chapter is based on the lectures by Professor Francesco Mainardi of the University of Bologna, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If f(x) is piecewise differentiable, then the formula (1.2.2) holds true at all points where f(x) is continuous and the integral in it must be understood in the sense of the Cauchy principal value.

  2. 2.

    A sufficient condition of the existence of the Laplace transform is that the original function is of exponential order as \(t \rightarrow \infty . \) This means that some constant \(a_f \) exists such that the product \( \hbox {e}^{-a _f t}\, |f(t)|\) is bounded for all t greater than some T. Then \(\widetilde{f}(s)\) exists and is analytic in the half plane \(\mathfrak {R}(s) > a_f. \) If f(t) is piecewise differentiable, then the formula (1.2.4) holds true at all points where f(t) is continuous and the (complex) integral in it must be understood in the sense of the Cauchy principal value.

  3. 3.

    For the existence of the Mellin transform and the validity of the inversion formula, we need to recall the following theorems TM1, TM2 adapted from Marichev’s [113] treatise, TM1 Let \(f(r) \in L^c(\epsilon ,E),\,0<\epsilon<E<\infty ,\) be continuous in the intervals \((0,\epsilon ],\,[E,\infty ),\) and let \(\,|f(r) | \le M\, r^{-{\gamma _1}}\) for \(0<r<\epsilon ,\) \(\,|f(r) | \le M\, r^{-{\gamma _2}}\) for \(r>E,\) where M is a constant. Then for the existence of a strip in the s-plane in which \(f(r)\, r^{s-1}\) belongs to \(L^c(0,\infty )\), it is sufficient that \(\gamma _1<\gamma _2. \) When this condition holds, the Mellin transform \(f^*(s)\) exists and is analytic in the vertical strip \(\gamma _1<\gamma =\mathfrak {R}(s) <\gamma _2. \) TM2 If f(t) is piecewise differentiable, and \(f(r)\, r^{\gamma -1} \in L^c(0, \infty ),\) then the formula (1.2.6) holds true at all points where f(r) is continuous and the (complex) integral in it must be understood in the sense of the Cauchy principal value.

  4. 4.

    We apply to Eq. (1.7.3) the fractional integral operator of order \(\beta \), namely \(\,_0I_t^\beta \). For \(\beta \in (0,1] \) we have:

    $$\begin{aligned} _0I_t^\beta \,\circ \, _0^*D_t^{\beta }\, r(x,t)= \,_0I_t^\beta \,\circ \, _0I_t^{1-\beta }\, D_t^1\, r(x,t) = \,_0I_t^1\, D_t^1\, r(x,t) = r(x,t) - r(x,0^+)\,. \end{aligned}$$

    For \(\beta \in (1,2] \) we have:

    $$\begin{aligned} _0I_t^\beta \,\circ \, _0^*D_t^{\beta }\, r(x,t)\!=\! \,_0I_t^\beta \,\circ \, _0I_t^{2-\beta }\, D_t^2\, r(x,t)\! = \! \,_0I_t^2\, D_t^2\, r(x,t) \!=\! r(x,t) - r(x,0^+) -r_t(x,0^+). \end{aligned}$$

References

  1. Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York: Dover.

    MATH  Google Scholar 

  2. Achar, B. N. N., Hanneken, J. W., & Clarke, T. (2004). Damping characteristics of a fractional oscillator. Physica A, 339, 311–319.

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R. P. (1953). A propos d’une note de M. Pierre Humbert. C.R. Acad. Sci. Paris, 236, 2031–2032.

    MathSciNet  MATH  Google Scholar 

  4. Anh, V. V., & Leonenko, N. N. (2001). Spectral analysis of fractional kinetic equations with random data. Journal Statistical Physics, 104, 1349–1387.

    Article  MathSciNet  MATH  Google Scholar 

  5. Atanackovic, T. M. (2004). Applications of fractional calculus in mechanics. Lecture Notes at the National Technical University of Athens (pp. 100).

    Google Scholar 

  6. Balescu, R. (2007). V-Langevin equations, continuous time random walks and fractional diffusion. Chaos, Solitons and Fractals, 34, 62–80.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barret, J. H. (1954). Differential equations of non-integer order. Canadian Journal of Mathematics, 6, 529–541.

    Article  MathSciNet  Google Scholar 

  8. Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw-Hill.

    MATH  Google Scholar 

  9. Berberan-Santos, M. N. (2005). Properties of the Mittag-Leffler relaxation function. Journal of Mathematical Chemistry, 38, 629–635.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blank, L. (1997). Numerical treatment of differential equations of fractional order. Non-linear World, 4(4), 473–491.

    MathSciNet  MATH  Google Scholar 

  11. Buchen, P. W., & Mainardi, F. (1975). Asymptotic expansions for transient viscoelastic waves. Journal de Mécanique, 14, 597–608.

    MATH  Google Scholar 

  12. Butzer, P., & Westphal, U. (2000). Introduction to fractional calculus. In H. Hilfer (Ed.), Fractional calculus, applications in physics (pp. 1–85). Singapore: World Scientific.

    Google Scholar 

  13. Cafagna, D. (2007). Fractional calculus: A mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine, 1, 35–40.

    Article  MathSciNet  Google Scholar 

  14. Camargo, R. F., Chiacchio, A. O., Charnet, R. & Capelas de Oliveira, E. (2009). Solution of the fractional Langevin equation and the Mittag-Leffler functions. Journal of Mathematical Physics, 50, 063507/1-8.

    Google Scholar 

  15. Caputo, M. (1966). Linear models of dissipation whose \(Q\) is almost frequency independent. Annali di Geofisica, 19, 383–393.

    Google Scholar 

  16. Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent part II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.

    Article  Google Scholar 

  17. Caputo, M. (1969). Elasticità e Dissipazione. Bologna: Zanichelli.

    Google Scholar 

  18. Caputo, M. (1973). Elasticity with dissipation represented by a simple memory mechanism, Atti Accad. Naz. Lincei, Rend. Classe Scienze (Ser.8), 55, 467–470.

    Google Scholar 

  19. Caputo, M. (1976). Vibrations of an infinite plate with a frequency independent Q. Journal of the Acoustical Society of America, 60, 634–639.

    Article  Google Scholar 

  20. Caputo, M. (1979). A model for the fatigue in elastic materials with frequency independent Q. Journal of the Acoustical Society of America, 66, 176–179.

    Article  Google Scholar 

  21. Caputo, M. (1996). The Green function of the diffusion in porous media with memory, Rend. Fis. Acc. Lincei (Ser.9), 7, 243–250.

    Google Scholar 

  22. Caputo, M. (1999). Diffusion of fluids in porous media with memory. Geothermics, 28, 113–130.

    Article  Google Scholar 

  23. Caputo, M., & Mainardi, F. (1971). A new dissipation model based on memory mechanism. Pure and Applied Geophysics (PAGEOPH), 91, 134–147. [Reprinted in Fractional Calculus and Applied Analysis, 10(3), 309–324 (2007)]

    Google Scholar 

  24. Caputo, M., & Mainardi, F. (1971). Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II), 1, 161–198.

    Google Scholar 

  25. Carcione, J. M., Cavallini, F., Mainardi, F., & Hanyga, A. (2002). Time-domain seismic modelling of constant-\(Q\) wave propagation using fractional derivatives. Pure and Applied Geophysics (PAGEOPH), 159, 1719–1736.

    Article  Google Scholar 

  26. Carpinteri, A., & Cornetti, P. (2002). A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 13, 85–94.

    Article  MATH  Google Scholar 

  27. Chin, R. C. Y. (1980). Wave propagation in viscoelastic media. In A. Dziewonski & E. Boschi (Eds.), Physics of the earth’s interior (pp. 213–246). Amsterdam: North-Holland [Enrico Fermi International School, Course 78].

    Google Scholar 

  28. Christensen, R. M. (1982). Theroy of viscoelasticity. New York: Academic Press (1st ed. (1972)).

    Google Scholar 

  29. Davis, H. T. (1936). The theory of linear operators. Bloomington: The Principia Press.

    Google Scholar 

  30. Diethelm, K. (2008). An investigation of some no-classical methods for the numerical approximation of Caputo-type fractional derivatives. Numerical Algorithms, 47, 361–390.

    Article  MathSciNet  MATH  Google Scholar 

  31. Diethelm, K. (2010). The analysis of fractional differential equations (Vol. 2004). Lecture notes in mathematics. Berlin: Springer.

    Google Scholar 

  32. Doetsch, G. (1974). Introduction to the theory and application of the Laplace transformation. Berlin: Springer.

    Book  MATH  Google Scholar 

  33. Dzherbashyan, M. M. (1966). Integral transforms and representations of functions in the complex plane, Nauka, Moscow. [in Russian]. There is also the transliteration as Djrbashyan.

    Google Scholar 

  34. Dzherbashyan, M. M. (1993). Harmonic analysis and boundary value problems in the complex domain. Basel: Birkhäuser Verlag.

    Google Scholar 

  35. Eidelman, S. D., & Kochubei, A. N. (2004). Cauchy problem for fractional diffusion equations. Journal of Differential Equations, 199, 211–255.

    Article  MathSciNet  MATH  Google Scholar 

  36. Engler, H. (1997). Similarity solutions for a class of hyperbolic integro-differential equations. Differential Integral Equations, 10, 815–840.

    MathSciNet  MATH  Google Scholar 

  37. Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953–1955). Higher transcendental functions, 3 volumes. New York: McGraw-Hill [Bateman Project].

    Google Scholar 

  38. Feller, W. (1952). On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié a M. Riesz, Lund (pp. 73–81).

    Google Scholar 

  39. Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. II). New York: Wiley [First edition (1966)].

    Google Scholar 

  40. Fujita, Y. (1990). Integro-differential equation which interpolates the heat equation and the wave equation I, II. Osaka Journal of Mathematics, 27(309–321), 797–804.

    MathSciNet  MATH  Google Scholar 

  41. Fujita, Y. (1990). Cauchy problems of fractional order and stable processes. Japan Journal of Applied Mathematics, 7, 459–476.

    Article  MathSciNet  MATH  Google Scholar 

  42. Gawronski, W. (1984). On the bell-shape of stable distributions. Annals of Probability, 12, 230–242.

    Article  MathSciNet  MATH  Google Scholar 

  43. Gel’fand, I. M., & Shilov, G. E. (1964). Generalized functions (Vol. 1). New York: Academic Press.

    MATH  Google Scholar 

  44. Giona, M., & Roman, H. E. (1992). Fractional diffusion equation for transport phenomena in random media. Physica A, 185, 82–97.

    Article  Google Scholar 

  45. Gonsovskii, V. L., & Rossikhin, Yu. A. (1973). Stress waves in a viscoelastic medium with a singular hereditary kernel. Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, 4, 184–186 [Translated from the Russian by Plenum Publishing Corporation, New Yorki (1975)].

    Google Scholar 

  46. Gorenflo, R. (1997). Fractional calculus: Some numerical methods. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 277–290). Wien: Springer. http://www.fracalmo.org.

  47. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 223–276). Wien: Springer [E-print: arXiv:0805.3823].

  48. Gorenflo, R., & Mainardi, F. (1998). Fractional calculus and stable probability distributions. Archives of Mechanics, 50, 377–388.

    MathSciNet  MATH  Google Scholar 

  49. Gorenflo, R., & Mainardi, F. (1998). Random walk models for space-fractional diffusion processes. Fractional Calculus and Applied Analysis, 1, 167–191.

    MathSciNet  MATH  Google Scholar 

  50. Gorenflo, R., & Mainardi, F. (1998). Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equations. Matimyás Matematika, 21, 109–118.

    MathSciNet  MATH  Google Scholar 

  51. Gorenflo, R., & Mainardi, F. (2008). Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects. In R. Klages, G. Radons, & I. M. Sokolov (Eds.), Anomalous transport: Foundations and applications (pp. 93–127). Weinheim: Wiley-VCH [E-print arXiv:0705.0797].

  52. Gorenflo, R., & Mainardi, F. (2009). Some recent advances in theory and simulation of fractional diffusion processes. Journal of Computational and Applied Mathematics, 229(2), 400–415 [E-print: arXiv:0801.0146].

  53. Gorenflo, R., & Rutman, R. (1994). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology.

    Google Scholar 

  54. Gorenflo, R., & Vessella, S. (1991). Abel integral equations: Analysis and applications (Vol. 1461). Lecture notes in mathematics. Berlin: Springer.

    Google Scholar 

  55. Gorenflo, R., Luchko, Yu., & Rogosin, S. V. (1997). Mittag-Leffler type functions: Notes on growth properties and distribution of zeros, Preprint No A-97-04, Fachbereich Mathematik und Informatik, Freie Universität Berlin, Serie Mathematik (pp. 23) [E-print: http://www.math.fu-berlin.de/publ/index.html].

  56. Gorenflo, R., Luchko, Yu., & Mainardi, F. (1999). Analytical properties and applications of the Wright function. Fractional Calculus and Applied Analysis, 2, 383–414.

    MathSciNet  MATH  Google Scholar 

  57. Gorenflo, R., Iskenderov, A., & Luchko, Yu. (2000). Mapping between solutions of frational diffusion-wave equations. Fractional Calculus and Applied Analysis, 3, 75–86.

    MathSciNet  MATH  Google Scholar 

  58. Gorenflo, R., Luchko, Yu., & Mainardi, F. (2000). Wright functions as scale-invariant solutions of the diffusion-wave equation. Journal of Computational and Applied Mathematics, 118, 175–191.

    Article  MathSciNet  MATH  Google Scholar 

  59. Gorenflo, R., Loutchko, J., & Luchko, Yu. (2002). Computation of the Mittag-Leffler function \(E_{\alpha, \beta } (z)\) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518.

    MathSciNet  MATH  Google Scholar 

  60. Graffi, D. (1982). Mathematical models and waves in linear viscoelasticity. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 1–27). Research notes in mathematics. London: Pitman.

    Google Scholar 

  61. Gross, B. (1947). On creep and relaxation. Journal of Applied Physics, 18, 212–221.

    Article  MathSciNet  Google Scholar 

  62. Gupta, I. S., & Debnath, L. (2007). Some properties of the Mittag-Leffler functions. Integral Transforms and Special Functions, 18(5), 329–336.

    Article  MathSciNet  MATH  Google Scholar 

  63. Hanneken, J. W., Achar, B. N. N., Puzio, R., & Vaught, D. M. (2009). Properties of the Mittag-Leffler function for negative \(\alpha \). Physica Scripta, T136, 014037/1-5.

    Google Scholar 

  64. Hanyga, A. (2002). Multi-dimensional solutions of time-fractional diffusion-wave equation. Proceedings of the Royal Society of London, 458, 933–957.

    Article  MathSciNet  MATH  Google Scholar 

  65. Haubold, H. J., & Mathai, A. M. (2000). The fractional kinetic equation and thermonuclear functions. Astrophysics and Space Science, 273, 53–63.

    Article  MATH  Google Scholar 

  66. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2007). Solution of fractional reaction-diffusion equations in terms of the \(H\)-function. Bulletin of the Astronomical Society of India, 35, 681–689.

    Google Scholar 

  67. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2009). Mittag-Leffler functions and their applications (pp. 49). arXiv:0909.0230.

  68. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011). Mittag-Leffler functions and their applications. Journal of Applied Mathematics, 2011, Article ID 298628, 51 p. Hindawi Publishing Corporation [E-Print: arXiv:0909.0230].

  69. Hilfer, R. (2000). Fractional time evolution. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 87–130). Singapore: World Scientific.

    Chapter  Google Scholar 

  70. Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17(9), 637–652.

    Article  MathSciNet  MATH  Google Scholar 

  71. Hille, E., & Tamarkin, J. D. (1930). On the theory of linear integral equations. Annals of Mathematics, 31, 479–528.

    Article  MathSciNet  MATH  Google Scholar 

  72. Humbert, P. (1945). Nouvelles correspondances symboliques. Bull. Sci. Mathém. (Paris, II ser.), 69, 121–129.

    Google Scholar 

  73. Humbert, P. (1953). Quelques résultats relatifs à la fonction de Mittag-Leffler. C.R. Acad. Sci. Paris, 236, 1467–1468.

    MathSciNet  MATH  Google Scholar 

  74. Humbert, P., & Agarwal, R. P. (1953). Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations. Bull. Sci. Math (Ser. II), 77, 180–185.

    Google Scholar 

  75. Kilbas, A. A., & Saigo, M. (1996). On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations. Integral Transforms and Special Functions, 4, 355–370.

    Article  MathSciNet  MATH  Google Scholar 

  76. Kilbas, A. A., Saigo, M., & Trujillo, J. J. (2002). On the generalized Wright function. Fractional Calculus and Applied Analysis, 5(4), 437–460.

    MathSciNet  MATH  Google Scholar 

  77. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). North-Holland series on mathematics studies. Amsterdam: Elsevier.

    Google Scholar 

  78. Kiryakova, V. (1994). Generalized fractional calculus and applications (Vol. 301). Pitman research notes in mathematics. Harlow: Longman.

    Google Scholar 

  79. Kiryakova, V. (1997). All the special functions are fractional differintegrals of elementary functions. Journal of Physics A: Mathematical and General, 30, 5085–5103.

    Article  MathSciNet  MATH  Google Scholar 

  80. Kochubei, A. N. (1989). A Cauchy problem for evolution equations of fractional order. Differential Equations, 25, 967–974 [English translation from the Russian Journal Differentsial’nye Uravneniya].

    Google Scholar 

  81. Kochubei, A. N. (1990). Fractional order diffusion. Differential Equations, 26, 485–492 [English translation from the Russian Journal Differentsial’nye Uravneniya].

    Google Scholar 

  82. Kolsky, H. (1956). The propagation of stress pulses in viscoelastic solids. Philosophical Magazine (Series 8), 2, 693–710.

    Google Scholar 

  83. Kreis, A., & Pipkin, A. C. (1986). Viscoelastic pulse propagation and stable probability distributions. Quarterly of Applied Mathematics, 44, 353–360.

    Article  MathSciNet  MATH  Google Scholar 

  84. Luchko, Yu. (1999). Operational method in fractional calculus. Fractional Calculus and Applied Analysis, 2, 463–488.

    MathSciNet  MATH  Google Scholar 

  85. Luchko, Yu. (2000). Asymptotics of zeros of the Wright function. Zeit. Anal. Anwendungen, 19, 583–595.

    Article  MathSciNet  MATH  Google Scholar 

  86. Luchko, Yu. (2001). On the distribution of zeros of the Wright function. Integral Transforms and Special Functions, 11, 195–200.

    Article  MathSciNet  MATH  Google Scholar 

  87. Luchko, Yu. (2008). Algorithms for evaluation of the Wright function for the real arguments’ values. Fractional Calculus and Applied Analysis, 11, 57–75.

    MathSciNet  MATH  Google Scholar 

  88. Magin, R. L. (2006). Fractional calculus in bioengineering. Connecticut: Begell House Publishers.

    Google Scholar 

  89. Mainardi, F. (1994). On the initial value problem for the fractional diffusion-wave equation. In S. Rionero & T. Ruggeri (Eds.), Waves and stability in continuous media (pp. 246–251). Singapore: World Scientific.

    Google Scholar 

  90. Mainardi, F. (1995). The time fractional diffusion-wave equation. Radiophysics and Quantum Electronics, 38(1–2), 20–36 [English translation from the Russian of Radiofisika].

    Google Scholar 

  91. Mainardi, F. (1996). The fundamental solutions for the fractional diffusion-wave equation. Applied Mathematics Letters, 9(6), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  92. Mainardi, F. (1996). Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons and Fractals, 7, 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  93. Mainardi, F. (1997). Fractional calculus: Some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 291–348). Wien: Springer. http://www.fracalmo.org.

  94. Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.

    Book  MATH  Google Scholar 

  95. Mainardi, F., & Gorenflo, R. (2000). On Mitag-Leffler type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118, 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  96. Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308 [E-print: arXiv:0801.4914].

  97. Mainardi, F., & Pagnini, G. (2003). The Wright functions as solutions of the time-fractional diffusion equations.

    Google Scholar 

  98. Mainardi, F., & Paradisi, P. (2001). Fractional diffusive waves. Journal of Computational Acoustics, 9, 1417–1436.

    Article  MathSciNet  MATH  Google Scholar 

  99. Mainardi, F., & Spada, G. (2011). Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal, Special Topics, 193, 133–160.

    Article  Google Scholar 

  100. Mainardi, F., & Tomirotti, M. (1995). On a special function arising in the time fractional diffusion-wave equation. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology Publications.

    Google Scholar 

  101. Mainardi, F., & Tomirotti, M. (1997). Seismic pulse propagation with constant \(Q\) and stable probability distributions. Annali di Geofisica, 40, 1311–1328.

    Google Scholar 

  102. Mainardi, F., & Turchetti, G. (1975). Wave front expansion for transient viscoelastic waves. Mechanics Research Communications, 2, 107–112.

    Article  Google Scholar 

  103. Mainardi, F., Raberto, M., Gorenflo, R., & Scalas, E. (2000). Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A, 287(3–4), 468–481.

    Article  MATH  Google Scholar 

  104. Mainardi, F., Luchko, Yu., & Pagnini, G. (2001). The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis, 4, 153–192 [E-print arXiv:cond-mat/0702419].

  105. Mainardi, F., Pagnini, G., & Gorenflo, R. (2003). Mellin transform and subordination laws in fractional diffusion processes. Fractional Calculus and Applied Analysis, 6(4), 441–459 [E-print: http://arxiv.org/abs/math/0702133].

  106. Mainardi, F., Gorenflo, R., & Scalas, E. (2004). A fractional generalization of the Poisson processes. Vietnam Journal of Mathematics, 32 SI, 53–64 [E-print arXiv:math/0701454].

  107. Mainardi, F., Pagnini, G., & Saxena, R. K. (2005). Fox H-functions in fractional diffusion. Journal of Computational and Applied Mathematics, 178, 321–331.

    Article  MathSciNet  MATH  Google Scholar 

  108. Mainardi, F., Gorenflo, R., & Vivoli, A. (2005). Renewal processes of Mittag-Leffler and Wright type. Fractional Calculus and Applied Analysis, 8, 7–38 [E-print arXiv:math/0701455].

  109. Mainardi, F., Gorenflo, R., & Vivioli, A. (2007). Beyond the Poisson renewal process: A tutorial survey. Journal of Computational and Applied Mathematics, 205, 725–735.

    Article  MathSciNet  MATH  Google Scholar 

  110. Mainardi, F., Mura, A., Gorenflo, R., & Stojanovic, M. (2007). The two forms of fractional relaxation of distributed order. Journal of Vibration and Control, 13(9–10), 1249–1268 [E-print arXiv:cond-mat/0701131].

  111. Mainardi, F., Mura, A., Pagnini, G., & Gorenflo, R. (2008). Time-fractional diffusion of distributed order. Journal of Vibration and Control, 14(9–10), 1267–1290 [arXiv:org/abs/cond-mat/0701132].

  112. Mainardi, F., Mura, A., & Pagnini, G. (2009). The \(M\)-Wright function in time-fractional diffusion processes: A tutorial survey. International Journal of Differential Equations.

    Google Scholar 

  113. Marichev, O. I. (1983). Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. Chichester: Ellis Horwood.

    MATH  Google Scholar 

  114. Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer.

    Book  MATH  Google Scholar 

  115. Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2010). The H-function: Theory and applications. New York: Springer.

    Book  MATH  Google Scholar 

  116. Meshkov, S. I., & Rossikhin, Yu. A. (1970). Sound wave propagation in a viscoelastic medium whose hereditary properties are determined by weakly singular kernels. In Yu. N. Rabotnov (Kishniev) (Ed.), Waves in inelastic media (pp. 162–172) [in Russian].

    Google Scholar 

  117. Metzler, R., Glöckle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for anomalous diffusion. Physica A, 211, 13–24.

    Article  Google Scholar 

  118. Mikusiński, J. (1959). On the function whose Laplace transform is exp \( (- s^\alpha )\). Studia Math., 18, 191–198.

    MathSciNet  MATH  Google Scholar 

  119. Miller, K. S. (1993). The Mittag-Leffler and related functions. Integral Transforms and Special Functions, 1, 41–49.

    Article  MathSciNet  MATH  Google Scholar 

  120. Miller, K. S. (2001). Some simple representations of the generalized Mittag-Leffler functions. Integral Transforms and Special Functions, 11(1), 13–24.

    Article  MathSciNet  MATH  Google Scholar 

  121. Miller, K. S., & Ross, B. (1993). An Introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    MATH  Google Scholar 

  122. Miller, K. S., & Samko, S. G. (1997). A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Analysis Exchange, 23(2), 753–755.

    MathSciNet  MATH  Google Scholar 

  123. Miller, K. S., & Samko, S. G. (2001). Completely monotonic functions. Integral Transforms and Special Functions, 12, 389–402.

    Article  MathSciNet  MATH  Google Scholar 

  124. Mittag-Leffler, M. G. (1903). Une généralisation de l’intégrale de Laplace-Abel. C.R. Acad. Sci. Paris (Ser. II), 137, 537–539.

    Google Scholar 

  125. Mittag-Leffler, M. G. (1903). Sur la nouvelle fonction \(E_{\alpha } (x)\). C.R. Acad. Sci. Paris (Ser. II), 137, 554–558.

    Google Scholar 

  126. Mittag-Leffler, M. G. (1904). Sopra la funzione \(E_{\alpha } (x)\). Rendiconti R. Accademia Lincei (Ser. V), 13, 3–5.

    Google Scholar 

  127. Mittag-Leffler, M. G. (1905). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–181.

    Article  MathSciNet  MATH  Google Scholar 

  128. Mura, A. (2008). Non-Markovian stochastic processes and their applications: From anomalous diffusion to time series analysis. Ph.D. thesis, University of Bologna (Supervisor: Professor F. Mainardi). Now available by Lambert Academic Publishing (2011).

    Google Scholar 

  129. Mura, A., & Mainardi, F. (2009). A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integral Transforms and Special Functions, 20(3-4), 185–198. E-print: arXiv:0711.0665.

  130. Mura, A., & Pagnini, G. (2008). Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. Journal of Physics A: Mathematical and Theoretical, 41(28), 285002/1-22. E-print arXiv:0801.4879.

  131. Mura, A., Taqqu, M. S., & Mainardi, F. (2008). Non-Markovian diffusion equations and processes: Analysis and simulation. Physica A, 387, 5033–5064.

    Article  MathSciNet  Google Scholar 

  132. Nigamatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B, 133, 425–430 [English translation from the Russian].

    Google Scholar 

  133. Nonnenmacher, T. F., & Glöckle, W. G. (1991). A fractional model for mechanical stress relaxation. Philosophical Magazine Letters, 64, 89–93.

    Article  Google Scholar 

  134. Nonnenmacher, T. F., & Metzler, R. (1995). On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 3, 557–566.

    Article  MathSciNet  MATH  Google Scholar 

  135. Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.

    MATH  Google Scholar 

  136. Pagnini, G. (2012). Erdeélyi-Kober fractional diffusion. Fractional Calculus and Applied Analysis, 15(1), 117–127.

    Article  MathSciNet  MATH  Google Scholar 

  137. Pillai, R. N. (1990). On Mittag-Leffler functions and related distributions. Annals of the Institute of Statistical Mathematics, 42, 157–161.

    Article  MathSciNet  MATH  Google Scholar 

  138. Pipkin, A. C. (1986). Lectures on viscoelastic theory (pp. 56–76). New York: Springer. [1st edition 1972].

    Google Scholar 

  139. Podlubny, I. (1999). Fractional differential equations (Vol. 198). Mathematics in science and engineering. San Diego: Academic Press.

    Google Scholar 

  140. Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5, 367–386.

    MathSciNet  MATH  Google Scholar 

  141. Podlubny, I. (2006). Mittag-Leffler function, WEB Site of MATLAB Central. http://www.mathworks.com/matlabcentral/fileexchange.

  142. Pollard, H. (1946). The representation of exp \(( -x^\lambda )\) as a Laplace integral. Bulletin of the American Mathematical Society, 52, 908–910.

    Article  MathSciNet  MATH  Google Scholar 

  143. Pollard, H. (1948). The completely monotonic character of the Mittag-Leffler function \(E_\alpha (-x)\). Bulletin of the American Mathematical Society, 54, 1115–1116.

    Article  MathSciNet  MATH  Google Scholar 

  144. Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag-Leffler function in the kernel. The Yokohama Mathematical Journal, 19, 7–15.

    MathSciNet  MATH  Google Scholar 

  145. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series (Vol. I, II, III). New York: Gordon and Breach.

    Google Scholar 

  146. Prüsse, J. (1993). Evolutionary integral equations and applications. Basel: Birkhauser Verlag.

    Book  Google Scholar 

  147. Pskhu, A. V. (2003). Solution of boundary value problems for the fractional diffusion equation by the Green function method. Differential Equations, 39(10), 1509–1513 [English translation from the Russian Journal Differentsial’nye Uravneniya].

    Google Scholar 

  148. Pskhu, A. V. (2005). Partial differential equations of fractional order. Moscow: Nauka [in Russian].

    Google Scholar 

  149. Pskhu, A. V. (2009). The fundamental solution of a diffusion-wave equation of fractional order. Izvestiya: Mathematics, 73(2), 351–392.

    Article  MathSciNet  MATH  Google Scholar 

  150. Rangarajan, G., & Ding, M. Z. (2000). Anomalous diffusion and the first passage time problem. Physical Review E, 62, 120–133.

    Article  MathSciNet  MATH  Google Scholar 

  151. Rangarajan, G., & Ding, M. Z. (2000). First passage time distribution for anomalous diffusion. Physics Letters A, 273, 322–330.

    Article  MathSciNet  MATH  Google Scholar 

  152. Robotnov, Yu. N. (1969). Creep problems in structural members. Amsterdam: North-Holland [English translation of the 1966 Russian edition].

    Google Scholar 

  153. Ross, B. (Ed.). (1975). Fractional calculus and its applications (Vol. 457). Lecture notes in mathematics. Berlin: Springer.

    Google Scholar 

  154. Ross, B. (1977). The development of fractional calculus 1695–1900. Historia Mathematica, 4, 75–89.

    Article  MathSciNet  MATH  Google Scholar 

  155. Rossikhin, Yu. A., & Shitikova, M. V. (1997). Application of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews, 50, 15–67.

    Google Scholar 

  156. Rossikhin, Yu. A., & Shittikova, M. V. (2007). Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fractional Calculus and Applied Analysis, 10(2), 111–121.

    Google Scholar 

  157. Rossikhin, Yu. A., & Shittikova, M. V. (2010). Applications of fractional calculus to dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews, 63, 010801/1-52.

    Google Scholar 

  158. Saichev, A., & Zaslavsky, G. (1997). Fractional kinetic equations: Solutions and applications. Chaos, 7, 753–764.

    Article  MathSciNet  MATH  Google Scholar 

  159. Saigo, M., & Kilbas, A. A. (1998). On Mittag-Leffler type function and applications. Integral Transforms Special Functions, 7(1–2), 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  160. Saigo, M., & Kilbas, A. A. (2000). Solution of a class of linear differential equations in terms of functions of Mittag-Leffler type. Differential Equations, 36(2), 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  161. Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives, theory and applications. Amsterdam: Gordon and Breach [English translation from the Russian, Nauka i Tekhnika, Minsk, 1987].

    Google Scholar 

  162. Sansone, G., & Gerretsen, J. (1960). Lectures on the theory of functions of a complex variable (Vol. I). Holomorphic functions. Groningen: Nordhoff.

    Google Scholar 

  163. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). On generalized fractional kinetic equations. Physica A, 344, 657–664.

    Article  MathSciNet  Google Scholar 

  164. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). Unified fractional kinetic equations and a fractional diffusion. Astrophysics and Space Science, 290, 299–310.

    Article  Google Scholar 

  165. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 289–296.

    Article  MATH  Google Scholar 

  166. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Reaction-diffusion systems and nonlinear waves. Astrophysics and Space Science, 305, 297–303.

    Article  MATH  Google Scholar 

  167. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of generalized fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 305–313.

    Article  MATH  Google Scholar 

  168. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of fractional reaction-diffusion equation in terms of Mittag-Leffler functions. International Journal of Science and Research, 15, 1–17.

    MATH  Google Scholar 

  169. Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2008). Solutions of certain fractional kinetic equations a fractional diffusion equation. International Journal of Science and Research, 17, 1–8.

    MATH  Google Scholar 

  170. Scalas, E., Gorenflo, R., & Mainardi, F. (2000). Fractional calculus and continuous-time finance. Physica A, 284, 376–384.

    Article  MathSciNet  MATH  Google Scholar 

  171. Scalas, E., Gorenflo, R., & Mainardi, F. (2004). Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Physical Review E,69, 011107/1-8.

    Google Scholar 

  172. Schneider, W. R. (1990). Grey noise. In S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, & R. Moresi (Eds.), Stochastic processes, physics and geometry (pp. 676–681). Singapore: World Scientific.

    Google Scholar 

  173. Schneider, W. R. (1996). Completely monotone generalized Mittag-Leffler functions. Expositiones Mathematicae, 14, 3–16.

    MathSciNet  MATH  Google Scholar 

  174. Schneider, W. R., & Wyss, W. (1989). Fractional diffusion and wave equations. Journal of Mathematical Physics, 30, 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  175. Scott-Blair, G. W. (1949). Survey of general and appplied rheology. London: Pitman.

    Google Scholar 

  176. Srivastava, H. M. (1968). On an extension of the Mittag-Leffler function. The Yokohama Mathematical Journal, 16, 77–88.

    MathSciNet  MATH  Google Scholar 

  177. Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  178. Srivastava, H. M., Gupta, K. C., & Goyal, S. P. (1982). The H-functions of one and two variables with applications. New Delhi and Madras: South Asian Publishers.

    MATH  Google Scholar 

  179. Stankovi\(\grave{\rm c}\), B., (1970). On the function of E.M. Wright. Publ. de l’Institut Mathèmatique. Beograd, Nouvelle Sèr., 10, 113–124.

    Google Scholar 

  180. Stankovi\(\grave{\rm c}\), B., (2002). Differential equations with fractional derivatives and nonconstant coefficients. Integral Transforms and Special Functions, 6, 489–496.

    Google Scholar 

  181. Strick, E. (1970). A predicted pedestal effect for pulse propagation in constant-Q solids. Geophysics, 35, 387–403.

    Article  Google Scholar 

  182. Strick, E. (1982). Application of linear viscoelasticity to seismic wave propagation. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 169–193). Research notes in mathematics. London: Pitman.

    Google Scholar 

  183. Strick, E., & Mainardi, F. (1982). On a general class of constant Q solids. Geophysical Journal of the Royal Astronomical Society, 69, 415–429.

    Article  Google Scholar 

  184. Temme, N. M. (1996). Special functions: An introduction to the classical functions of mathematical physics. New York: Wiley.

    Book  MATH  Google Scholar 

  185. Uchaikin, V. V. (2003). Relaxation processes and fractional differential equations. International Journal of Theoretical Physics, 42, 121–134.

    Article  MATH  Google Scholar 

  186. Uchaikin, V. V. (2008). Method of fractional derivatives. Ulyanovsk: ArteShock-Press [in Russian].

    Google Scholar 

  187. Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and stability: Stable distributions and their applications. Utrecht: VSP.

    Book  MATH  Google Scholar 

  188. West, B. J., Bologna, M., & Grigolini, P. (2003). Physics of fractal operators. Institute for nonlinear science. New York: Springer.

    Google Scholar 

  189. Wiman, A. (1905). Über den Fundamentalsatz der Theorie der Funkntionen \(E_\alpha (x)\). Acta Mathematica, 29, 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  190. Wiman, A. (1905). Über die Nullstellen der Funkntionen \(E_\alpha (x)\). Acta Mathematica, 29, 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  191. Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function. Proceedings of the Royal Society of London A, 455, 1381–1400.

    Article  MathSciNet  MATH  Google Scholar 

  192. Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function II. Proceedings of the Royal Society of London A, 455, 3065–3084.

    Article  MathSciNet  MATH  Google Scholar 

  193. Wong, R., & Zhao, Y.-Q. (2002). Exponential asymptotics of the Mittag-Leffler function. Constructive Approximation, 18, 355–385.

    Article  MathSciNet  MATH  Google Scholar 

  194. Wright, E. M. (1933). On the coefficients of power series having exponential singularities. Journal of the London Mathematical Society, 8, 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  195. Wright, E. M. (1935). The asymptotic expansion of the generalized Bessel function. Proceedings of the London Mathematical Society (Series II), 38, 257–270.

    Article  MATH  Google Scholar 

  196. Wright, E. M. (1935). The asymptotic expansion of the generalized hypergeometric function. Journal of the London Mathematical Society, 10, 287–293.

    Google Scholar 

  197. Wright, E. M. (1940). The generalized Bessel function of order greater than one. The Quarterly Journal of Mathematics, Oxford Series, 11, 36–48.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mathai .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mathai, A.M., Haubold, H.J. (2017). Essentials of Fractional Calculus. In: Fractional and Multivariable Calculus . Springer Optimization and Its Applications, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-59993-9_1

Download citation

Publish with us

Policies and ethics