Skip to main content

Linear Time Series Analysis

  • Chapter
  • First Online:
Advanced Data Analysis in Neuroscience

Part of the book series: Bernstein Series in Computational Neuroscience ((BSCN))

  • 2814 Accesses

Abstract

From a purely statistical point of view, one major difference between time series and data sets as discussed in the previous chapters is that temporally consecutive measurements are usually highly dependent, thus violating the assumption of identically and independently distributed observations on which most of conventional statistical inference relies. Before we dive deeper into this topic, we note that the independency assumption is not only violated in time series but also in a number of other common test situations. Hence, beyond the area of time series, statistical models and methods have been developed to deal with such scenarios. Most importantly, the assumption of independent observations is given up in the class of mixed models which combine fixed and random effects, and which are suited for both nested and longitudinal (i.e., time series) data (see, e.g., Khuri et al. 1998; West et al. 2006, for more details). Aarts et al. (2014) discuss these models specifically in the context of neuroscience, where dependent and nested data other than time series frequently occur, e.g., when we have recordings from multiple neurons, nested within animals, nested within treatment groups, thus introducing dependencies. Besides including random effects, mixed models can account for dependency by allowing for much more flexible (parameterized) forms for the involved covariance matrices. For instance, in a regression model like Eq. (2.6) we may assume a full covariance matrix for the error terms [instead of the scalar form assumed in Eq. (2.6)] that captures some of the correlations among observations. Taking such a full covariance structure for Σ into account, under the multivariate normal model the ML estimator for parameters β becomes (West et al. 2006)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts, E., Verhage, M., Veenvliet, J.V., Dolan, C.V., van der Sluis, S.: A solution to dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci. 17, 491–496 (2014)

    Article  Google Scholar 

  • Abeles, M.: Corticonics. Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61, 900–917 (1989)

    Google Scholar 

  • Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., Deisseroth, K.: Temporally precise in vivo control of intracellular signalling. Nature. 458, 1025–1029 (2009)

    Article  Google Scholar 

  • Auger-Méthé, M., Field, C., Albertsen, C.M., Derocher, A.E., Lewis, M.A., Jonsen, I.D., Mills Flemming, J.: State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems. Scientific Rep. 6, 26677 (2016)

    Article  Google Scholar 

  • Badre, D., Doll, B.B., Long, N.M., Frank, M.J.: Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron. 73, 595–607 (2012)

    Article  Google Scholar 

  • Bähner, F., Demanuele, C., Schweiger, J., Gerchen, M.F., Zamoscik, V., Ueltzhöffer, K., Hahn, T., Meyer, P., Flor, H., Durstewitz, D., Tost, H., Kirsch, P., Plichta, M.M., Meyer-Lindenberg, A.: Hippocampal-dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: a human translational imaging study. Neuropsychopharmacology. 40, 1674–1681 (2015)

    Article  Google Scholar 

  • Balaguer-Ballester, E., Lapish, C.C., Seamans, J.K., Daniel Durstewitz, D.: Attractor dynamics of cortical populations during memory-guided decision-making. PLoS Comput. Biol. 7, e1002057 (2011)

    Article  Google Scholar 

  • Balleine, B.W., O’Doherty, J.P.: Human and rodent homologies in action control. Neuropsychopharmacology. 35, 48–69 (2010)

    Article  Google Scholar 

  • Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic programming. Artif. Intell. 72, 81–138 (1995)

    Article  Google Scholar 

  • Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  • Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  • Box, G.E., Cox, D.R.: An analysis of transformations. J. Roy. Stat. Soc. B. 26, 211–252 (1964)

    MATH  Google Scholar 

  • Box, G.E., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, Hoboken, NJ (2008)

    Book  MATH  Google Scholar 

  • Brody, C.D.: Slow covariations in neuronal resting potentials can lead to artefactually fast cross-correlations in their spike trains. J. Neurophysiol. 80, 3345–3351 (1998)

    Google Scholar 

  • Brody, C.D.: Correlations without synchrony. Neural Comput. 11, 1537–1551 (1999)

    Article  Google Scholar 

  • Brody, C.D., Hopfield, J.J.: Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron. 37, 843–852 (2003)

    Article  Google Scholar 

  • Brunton, B.W., Botvinick, M.M., Brody, C.D.: Rats and humans can optimally accumulate evidence for decision-making. Science. 340, 95–98 (2013)

    Article  Google Scholar 

  • Buesing, L., Macke, J.H., Sahani, M.: Learning stable, regularised latent models of neural population dynamics. Network. 23, 24–47 (2012)

    Google Scholar 

  • Buzsaki, G.: Rhythms of the Brain. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  • Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science. 304, 1926–1929 (2004)

    Article  Google Scholar 

  • Camerer, C., Ho, T.H.: Experience-weighted attraction learning in normal form games. Econometrica. 67, 827–874 (1999)

    Google Scholar 

  • Chatfield, C.: The Analysis of Time Series: An Introduction, 6th edn. Boca Raton, FL, Chapman and Hall/CRC (2003)

    MATH  Google Scholar 

  • Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application. Series: Cambridge Series in Statistical and Probabilistic Mathematics (No. 1) (1997)

  • Daw, N.D., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711 (2005)

    Article  Google Scholar 

  • Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical substrates for exploratory decisions in humans. Nature. 441, 876–879 (2006)

    Article  Google Scholar 

  • Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008)

    Article  Google Scholar 

  • Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature. 402, 529–533 (1999)

    Article  Google Scholar 

  • Domjan, M.: The Principles of Learning and Behavior. Thomson Wadsworth, Belmont (2003)

    Google Scholar 

  • Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods (Oxford Statistical Science). Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  • Durstewitz, D., Balaguer-Ballester, E.: Statistical approaches for reconstructing neuro-cognitive dynamics from high-dimensional neural recordings. Neuroforum. 1, 89–98 (2010)

    Google Scholar 

  • Durstewitz, D., Gabriel, T.: Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb. Cortex. 17, 894–908 (2007)

    Article  Google Scholar 

  • Durstewitz, D., Koppe, G., Toutounji, H.: Computational models as statistical tools. Curr. Opin. Behav. Sci. 11, 93–99 (2016)

    Article  Google Scholar 

  • Durstewitz, D., Vittoz, N.M., Floresco, S.B., Seamans, J.K.: Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron. 66, 438–448 (2010)

    Article  Google Scholar 

  • Einevoll, G.T., Franke, F., Hagen, E., Pouzat, C., Harris, K.D.: Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 22, 11–17 (2012)

    Article  Google Scholar 

  • Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Taylor & Francis, Boca Raton, FL (1993)

    Book  MATH  Google Scholar 

  • Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing (Review). Nat. Rev. Neurosci. 2, 704–716 (2001)

    Article  Google Scholar 

  • Fahrmeir, L., Tutz, G.: Multivariate Statistical Modelling Based on Generalized Linear Models. Springer, New York (2010)

    MATH  Google Scholar 

  • Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York (2003)

    Book  MATH  Google Scholar 

  • Frank, M.J., Seeberger, L.C., O’reilly, R.C.: By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 306, 1940–1943 (2004)

    Article  Google Scholar 

  • Frank, M.J., Doll, B.B., Oas-Terpstra, J., Moreno, F.: Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat. Neurosci. 12, 1062–1068 (2009)

    Article  Google Scholar 

  • Fujisawa, S., Amarasingham, A., Harrison, M.T., Buzsáki, G.: Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11, 823–833 (2008)

    Article  Google Scholar 

  • Funahashi, S., Inoue, M.: Neuronal interactions related to working memory processes in the primate prefrontal cortex revealed by cross-correlation analysis. Cereb. Cortex. 10, 535–551 (2000)

    Article  Google Scholar 

  • Ghahramani, Z.: An introduction to Hidden Markov Models and Bayesian networks. Int. J. Pattern Recog. Artif. Intell. 15, 9–42 (2001)

    Article  Google Scholar 

  • Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 37, 424–438 (1969)

    Article  MATH  Google Scholar 

  • Granger, C.W.J.: Testing for causality: a personal viewpoint. J. Econ. Dyn. Control. 2, 329–352 (1980)

    Article  MathSciNet  Google Scholar 

  • Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 338, 334–337 (1989)

    Article  Google Scholar 

  • Grün, S.: Data-driven significance estimation for precise spike correlation. J. Neurophysiol. 101, 1126–1140 (2009)

    Article  Google Scholar 

  • Grün, S., Diesmann, M., Aertsen, A.: Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput. 14, 81–119 (2002b)

    Article  MATH  Google Scholar 

  • Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G., Buzsáki, G.: Organization of cell assemblies in the hippocampus. Nature. 424, 552–556 (2003)

    Article  Google Scholar 

  • Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  • Hopfield, J.J., Brody, C.D.: What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. 98, 1282–1287 (2001)

    Article  Google Scholar 

  • Jahr, C.E., Stevens, C.F.: Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10, 3178–3182 (1990)

    Google Scholar 

  • Jensen, H.J.: Self-Organized Criticality. Cambridge UP, Cambridge (1998)

    Book  MATH  Google Scholar 

  • Jones, M.W., Wilson, M.A.: Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402 (2005)

    Article  Google Scholar 

  • Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82, 35–45 (1960)

    Google Scholar 

  • Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics, vol. 3. Griffin, London (1983)

    MATH  Google Scholar 

  • Khamassi, M., Quilodran, R., Enel, P., Dominey, P.F., Procyk, E.: Behavioral regulation and the modulation of information coding in the lateral prefrontal and cingulate cortex. Cereb. Cortex. 25(9), 3197–3218 (2014)

    Article  Google Scholar 

  • Khuri, A., Mathew, T., Sinha, B.K.: Statistical Tests for Mixed Linear Models. Wiley, New York (1998)

    Book  MATH  Google Scholar 

  • Kim, S., Putrino, D., Ghosh, S., Brown, E.N.: A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput. Biol. 7, e1001110 (2011)

    Article  MathSciNet  Google Scholar 

  • Koch, K.R.: Parameter Estimation and Hypothesis Testing in Linear Models. Springer Science & Business Media, Berlin (1999a)

    Book  MATH  Google Scholar 

  • Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999b)

    Google Scholar 

  • Koppe, G., Mallien, A.S., Berger, S., Bartsch, D., Gass, P., Vollmayr, B., Durstewitz, D.: CACNA1C gene regulates behavioral strategies in operant rule learning. PLoS Biol. 15, e2000936 (2017)

    Article  Google Scholar 

  • Koyama, S., Pérez-Bolde, L.C., Shalizi, C.R., Kass, R.E.: Approximate methods for state-space models. J. Am. Stat. Assoc. 105, 170–180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, C., Yao, Q., Bathia, N.: Estimation of latent factors for high-dimensional time series. Biometrika. 98, 901–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lapish, C.C., Durstewitz, D., Chandler, L.J., Seamans, J.K.: Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex. Proc. Natl. Acad. Sci. U S A. 105, 11963–11968 (2008)

    Article  Google Scholar 

  • Latimer, K.W., Yates, J.L., Meister, M.L., Huk, A.C., Pillow, J.W.: NEURONAL MODELING. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science. 349, 184–187 (2015)

    Article  Google Scholar 

  • Lee, H., Simpson, G.V., Logothetis, N.K., Rainer, G.: Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron. 45, 147–156 (2005)

    Article  Google Scholar 

  • Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of neural action potentials. Network. 9, R53–R78 (1998)

    Article  MATH  Google Scholar 

  • Ljung, G.M., Box, G.E.: On a measure of lack of fit in time series models. Biometrika. 65, 297–303 (1978)

    Article  MATH  Google Scholar 

  • Louis, S., Gerstein, G.L., Grün, S., Diesmann, M.: Surrogate spike train generation through dithering in operational time. Front. Comput. Neurosci. 4, 127 (2010)

    Article  Google Scholar 

  • Lütkepohl, H.: Structural Vector Autoregressive Analysis for Cointegrated Variables, pp. 73–86. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  • Macke, J.H., Buesing, L., Sahani, M.: Estimating state and parameters in state space models of spike trains. In: Chen, Z. (ed.) Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  • Mader, W., Linke, Y., Mader, M., Sommerlade, L., Timmer, J., Schelter, B.: A numerically efficient implementation of the expectation maximization algorithm for state space models. Appl. Math. Comput. 241, 222–232 (2014)

    MathSciNet  MATH  Google Scholar 

  • McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall/CRC Press, Boca Raton, FL (1989)

    Book  MATH  Google Scholar 

  • McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, New York (1997)

    MATH  Google Scholar 

  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature. 518, 529–533 (2015)

    Article  Google Scholar 

  • Mokeichev, A., Okun, M., Barak, O., Katz, Y., Ben-Shahar, O., Lampl, I.: Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron. 53, 413–425 (2007)

    Article  Google Scholar 

  • O’Doherty, J.P., Hampton, A., Kim, H.: Model-based fMRI and its application to reward learning and decision making. Ann. NY Acad. Sci. 1104, 35–53 (2007)

    Article  Google Scholar 

  • Paninski, L., Ahmadian, Y., Ferreira, D.G., Koyama, S., Rahnama, R.K., Vidne, M., Vogelstein, J., Wu, W.: A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2010)

    Article  MathSciNet  Google Scholar 

  • Paninski, L., Vidne, M., DePasquale, B., Ferreira, D.G.: Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods. J. Comput. Neurosci. 33, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  • Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P., Andersen, R.A.: Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002)

    Article  Google Scholar 

  • Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, (2011)

    Google Scholar 

  • Petersen, K.B., Pedersen, M.S.: The Matrix Cookbook. www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf (2012)

  • Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P.: Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. 454, 995–999 (2008)

    Article  Google Scholar 

  • Pillow, J.W., Ahmadian, Y., Paninski, L.: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 23, 1–45 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Quiroga-Lombard, C.S., Hass, J., Durstewitz, D.: Method for stationarity-segmentation of spike train data with application to the Pearson cross-correlation. J. Neurophysiol. 110, 562–572 (2013)

    Article  Google Scholar 

  • Ratcliff, R., McKoon, G.: Priming in item recognition: evidence for the propositional structure of sentences. J. Verbal Learning Verbal Behav. 17, 403–417 (1978)

    Article  Google Scholar 

  • Ratcliff, R., McKoon, G.: The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008)

    Article  MATH  Google Scholar 

  • Rauch, H.E., Striebel, C.T., Tung, F.: Maximum likelihood estimates of linear dynamic systems. AIAA J. 3, 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  • Russo, E., Durstewitz, D.: Cell assemblies at multiple time scales with arbitrary lag constellations. Elife. 6, e19428 (2017)

    Article  Google Scholar 

  • Sato, J.R., Fujita, A., Cardoso, E.F., Thomaz, C.E., Brammer, M.J., Amaro Jr., E.: Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis. Neuroimage. 52, 1444–1455 (2010)

    Article  Google Scholar 

  • Schonberg, T., O’Doherty, J.P., Joel, D., Inzelberg, R., Segev, Y., Daw, N.D.: Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage. 49, 772–781 (2010)

    Article  Google Scholar 

  • Schreiber, T., Schmitz, A.: Surrogate time series. Physica D: Nonlinear Phenomena. 142, 346–382 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science. 275, 1593–1599 (1997)

    Article  Google Scholar 

  • Set, E., Saez, I., Zhu, L., Houser, D.E., Myung, N., Zhong, S., Ebstein, R.P., Chew, S.H., Hsu, M.: Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games. Proc. Natl. Acad. Sci. U S A. 111, 9615–9620 (2014)

    Article  Google Scholar 

  • Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998)

    Google Scholar 

  • Shimazaki, H., Amari, S.I., Brown, E.N., Grün, S.: State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput. Biol. 8, e1002385 (2012)

    Article  MathSciNet  Google Scholar 

  • Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995)

    Article  Google Scholar 

  • Smith, A.C., Brown, E.N.: Estimating a state-space model from point process observations. Neural Comput. 15, 965–991 (2003)

    Article  MATH  Google Scholar 

  • Smith, A.C., Frank, L.M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Graybiel, A.M., Suzuki, W.A., Brown, E.N.: Dynamic analysis of learning in behavioral experiments. J. Neurosci. 24, 447–461 (2004)

    Article  Google Scholar 

  • Smith, A.C., Wirth, S., Suzuki, W.A., Brown, E.N.: Bayesian analysis of interleaved learning and response bias in behavioral experiments. J. Neurophysiol. 97, 2516–2524 (2007)

    Article  Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G.: Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature. 390, 70–74 (1997)

    Google Scholar 

  • Sul, J.H., Kim, H., Huh, N., Lee, D., Jung, M.W.: Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron. 66, 449–460 (2010)

    Article  Google Scholar 

  • Sutton, R., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  • Traub, R., Whittington, M.: Cortical Oscillations in Health and Disease. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  • Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen, A.: Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 373, 515–518 (1995)

    Article  Google Scholar 

  • Van Drongelen, Q.: Signal Processing for Neuroscientists. Introduction to the Analysis of Physiological Signals. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Wackerly, D., Mendenhall, W., Scheaffer, R.: Mathematical statistics with applications. Cengage Learning. (2008)

    Google Scholar 

  • West, B.T., Welch, K.B., Galecki, A.T.: Linear Mixed Models: A Practical Guide Using Statistical Software. Chapman & Hall, London (2006)

    MATH  Google Scholar 

  • Wu, G.R., Chen, F., Kang, D., Zhang, X., Marinazzo, D., Chen, H.: Multiscale causal connectivity analysis by canonical correlation: theory and application to epileptic brain. IEEE Trans. Biomed. Eng. 58, 3088–3096 (2011)

    Article  Google Scholar 

  • Yu, B.M., Kemere, C., Santhanam, G., Afshar, A., Ryu, S.I., Meng, T.H., Sahani, M., Shenoy, K.V.: Mixture of trajectory models for neural decoding of goal-directed movements. J. Neurophysiol. (5), 3763–3780 (2007)

    Google Scholar 

  • Yu, B.M., Cunningham, J.P., Santhanam, G., Ryu, S.I., Shenoy, K.V., Sahani, M.: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Durstewitz, D. (2017). Linear Time Series Analysis. In: Advanced Data Analysis in Neuroscience. Bernstein Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-59976-2_7

Download citation

Publish with us

Policies and ethics