Skip to main content

Bagchi’s Theorem for Families of Automorphic Forms

  • Chapter
  • First Online:
Exploring the Riemann Zeta Function
  • 2196 Accesses

Abstract

We prove a version of Bagchi’s Theorem and of Voronin’s Universality Theorem for the family of primitive cusp forms of weight 2 and prime level, and discuss under which conditions the argument will apply to a general reasonable family of automorphic L-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume \( q\geqslant 17 \) to ensure this property; it also holds for q = 11.

  2. 2.

    Here and below, it is important that the “almost surely” property holds for all s, which is the case because we work with random holomorphic functions, and not with particular evaluations of these random functions at specific points s.

  3. 3.

    These assumptions could be easily weakened, as has been done for Voronin’s Theorem.

References

  1. B. Bagchi, Statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series, PhD thesis, Indian Statistical Institute, Kolkata, 1981; available at library.isical.ac.in/jspui/handle/10263/4256

  2. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968)

    MATH  Google Scholar 

  3. J. Cogdell, P. Michel, On the complex moments of symmetric power L-functions at s = 1. Int. Math. Res. Not. 31, 1561–1617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Conrey, W. Duke, D. Farmer, The distribution of the eigenvalues of Hecke operators. Acta Arith. 78, 405–409 (1997)

    MathSciNet  MATH  Google Scholar 

  5. J.B. Conrey, D. Farmer, J. Keating, M. Rubinstein, N. Snaith, Integral moments of L-functions. Proc. Lond. Math. Soc. 91 33–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.H. Hardy, M. Riesz, The General Theory of Dirichlet’s Series. Cambridge Tracts in Mathematics, vol. 18 (Cambridge University Press, Cambridge, 1915)

    Google Scholar 

  7. H. Iwaniec, E. Kowalski, Analytic Number Theory. Colloquium Publications, vol. 53 (American Mathematical Society, Providence, 2004)

    Google Scholar 

  8. E. Kowalski, Families of Cusp Forms (Pub. Math. Besançon, 2013), pp. 5–40

    Google Scholar 

  9. E. Kowalski, Arithmetic Randonnée: An Introduction to Probabilistic Number Theory. ETH Zürich Lecture Notes, www.math.ethz.ch/~kowalski/probabilistic-number-theory.pdf

  10. E. Kowalski, Ph. Michel, The analytic rank of J 0(q) and zeros of automorphic L-functions. Duke Math. J. 100, 503–542 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Kowalski, Y.-K. Lau, K. Soundararajan, J. Wu, On modular signs. Math. Proc. Camb. Philos. Soc. 149, 389–411 (2010). doi:10.1017/S030500411000040X

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Kowalski, A. Saha, J. Tsimerman, Local spectral equidistribution for Siegel modular forms and applications. Compos. Math. 148, 335–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Laurinčikas, K. Matsumoto, The universality of zeta-functions attached to certain cusp forms. Acta Artih. 98, 345–359 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Li, H. Queffélec, Introduction à l’étude des espaces de Banach; Analyse et probabilités, Cours Spécialisés 12, S.M.F, 2004

    MATH  Google Scholar 

  15. P. Sarnak, S.-W. Shin, N. Templier, Families of L-functions and their symmetry, in Families of automorphic forms and the trace formula, Simons Symposia (Springer, New York, 2016), pp. 531–578

    Book  MATH  Google Scholar 

  16. J-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p . J. Am. Math. Soc. 10, 75–102 (1997)

    Article  MATH  Google Scholar 

  17. E.C. Titchmarsh, The Theory of Functions, 2nd edn. (Oxford University Press, Oxford, 1939)

    MATH  Google Scholar 

  18. S.M. Voronin, Theorem on the ‘universality’ of the Riemann zeta function, Izv. Akad. Nauk SSSR 39, 475–486 (1975); translation in Math. USSR Izv. 9, 443–445 (1975)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a DFG-SNF lead agency program grant (grant 200021L_153647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kowalski, E. (2017). Bagchi’s Theorem for Families of Automorphic Forms. In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds) Exploring the Riemann Zeta Function. Springer, Cham. https://doi.org/10.1007/978-3-319-59969-4_8

Download citation

Publish with us

Policies and ethics