Skip to main content

Ramanujan’s Formula for ζ(2n + 1)

  • Chapter
  • First Online:
Book cover Exploring the Riemann Zeta Function

Abstract

Ramanujan made many beautiful and elegant discoveries in his short life of 32 years, and one of them that has attracted the attention of several mathematicians over the years is his intriguing formula for ζ(2n + 1). To be sure, Ramanujan’s formula does not possess the elegance of Euler’s formula for ζ(2n), nor does it provide direct arithmetical information. But, one of the goals of this survey is to convince readers that it is indeed a remarkable formula. In particular, we discuss the history of Ramanujan’s formula, its connection to modular forms, as well as the remarkable properties of the associated polynomials. We also indicate analogues, generalizations and opportunities for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook, Part IV (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  2. R. Apéry, Interpolation de fractions continues et irrationalite de certaines constantes. Bull. Section des Sci., Tome III (Bibliothéque Nationale, Paris, 1981), pp. 37–63

    MATH  Google Scholar 

  3. T.M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.M. Apostol, Letter to Emil Grosswald, January 24, 1973

    Google Scholar 

  5. B.C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. B.C. Berndt, Ramanujan’s formula for ζ(2n + 1), in Professor Srinivasa Ramanujan Commemoration Volume (Jupiter Press, Madras, 1974), pp. 2–9

    Google Scholar 

  7. B.C. Berndt, Dedekind sums and a paper of G.H. Hardy. J. Lond. Math. Soc. (2) 13, 129–137 (1976)

    Google Scholar 

  8. B.C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7, 147–189 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. B.C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 304, 332–365 (1978)

    MathSciNet  MATH  Google Scholar 

  10. B.C. Berndt, Ramanujan’s Notebooks, Part II (Springer, New York, 1989)

    MATH  Google Scholar 

  11. B.C. Berndt, Ramanujan’s Notebooks, Part III (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  12. B.C. Berndt, An unpublished manuscript of Ramanujan on infinite series identities. J. Ramanujan Math. Soc. 19, 57–74 (2004)

    MathSciNet  MATH  Google Scholar 

  13. B.C. Berndt, A. Straub, On a secant Dirichlet series and Eichler integrals of Eisenstein series. Math. Z. 284(3), 827–852 (2016). doi:10.1007/s00209-016-1675-0

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bodendiek, Über verschiedene Methoden zur Bestimmung der Transformationsformeln der achten Wurzeln der Integralmoduln k 2(τ) und k 2(τ), ihrer Logarithmen sowie gewisser Lambertscher Reihen bei beliebigen Modulsubstitutionen, Dissertation der Universität Köln, 1968

    Google Scholar 

  15. R. Bodendiek, U. Halbritter, Über die Transformationsformel von logη(τ) und gewisser Lambertscher Reihen. Abh. Math. Semin. Univ. Hambg. 38, 147–167 (1972)

    Article  MATH  Google Scholar 

  16. G. Bol, Invarianten linearer Differentialgleichungen. Abh. Math. Semin. Univ. Hambg. 16, 1–28 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  17. D.M. Bradley, Series acceleration formulas for Dirichlet series with periodic coefficients. Ramanujan J. 6, 331–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Chandrasekharan, R. Narasimhan, Hecke’s functional equation and arithmetical identities. Ann. Math. 74, 1–23 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.B. Conrey, D.W. Farmer, Ö. Imamoglu, The nontrivial zeros of period polynomials of modular forms lie on the unit circle. Int. Math. Res. Not. 2013(20), 4758–4771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. El-Guindy, W. Raji, Unimodularity of roots of period polynomials of Hecke eigenforms. Bull. Lond. Math. Soc. 46(3), 528–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Ghusayni, The value of the zeta function at an odd argument. Int. J. Math. Comp. Sci. 4, 21–30 (2009)

    MathSciNet  MATH  Google Scholar 

  22. H.-J. Glaeske, Eine einheitliche Herleitung einer gewissen Klasse von Transformationsformeln der analytischen Zahlentheorie (I), Acta Arith. 20, 133–145 (1972)

    MathSciNet  MATH  Google Scholar 

  23. H.-J. Glaeske, Eine einheitliche Herleitung einer gewissen Klasse von Transformationsformeln der analytischen Zahlentheorie (II). Acta Arith. 20, 253–265 (1972)

    MathSciNet  MATH  Google Scholar 

  24. J.W.L. Glaisher, On the series which represent the twelve elliptic and the four zeta functions. Mess. Math. 18, 1–84 (1889)

    MathSciNet  Google Scholar 

  25. E. Grosswald, Die Werte der Riemannschen Zeta-funktion an ungeraden Argumentstellen. Nachr. Akad. Wiss. Göttingen 9–13 (1970)

    Google Scholar 

  26. E. Grosswald, Remarks concerning the values of the Riemann zeta function at integral, odd arguments. J. Number Theor. 4(3), 225–235 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Grosswald, Comments on some formulae of Ramanujan. Acta Arith. 21, 25–34 (1972)

    MathSciNet  MATH  Google Scholar 

  28. A.P. Guinand, Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. 15, 11–23 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.P. Guinand, Some rapidly convergent series for the Riemann ξ-function. Quart. J. Math. Ser. (2) 6, 156–160 (1955)

    Google Scholar 

  30. S. Gun, M.R. Murty, P. Rath, Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43, 939–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Iseki, The transformation formula for the Dedekind modular function and related functional equations. Duke Math. J. 24, 653–662 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Jin, W. Ma, K. Ono, K. Soundararajan, The Riemann Hypothesis for period polynomials of modular forms. Proc. Natl. Acad. Sci. USA. 113(10), 2603–2608 (2016). doi:10.1073/pnas.1600569113

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Kanemitsu, T. Kuzumaki, Transformation formulas for Lambert series. Šiauliai Math. Semin. 4(12), 105–123 (2009)

    MathSciNet  MATH  Google Scholar 

  34. S. Kanemitsu, Y. Tanigawa, M. Yoshimoto, On rapidly convergent series for the Riemann zeta-values via the modular relation. Abh. Math. Semin. Univ. Hambg. 72, 187–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Kanemitsu, Y. Tanigawa, M. Yoshimoto, Ramanujan’s formula and modular forms, in Number Theoretic Methods - Future Trends, ed. by S. Kanemitsu, C. Jia (Kluwer, Dordrecht, 2002), pp. 159–212

    Chapter  Google Scholar 

  36. K. Katayama, On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers. Acta Arith. 22, 149–155 (1973)

    MathSciNet  MATH  Google Scholar 

  37. K. Katayama, Zeta-functions, Lambert series and arithmetic functions analogous to Ramanujan’s τ-function. II. J. Reine Angew. Math. 282, 11–34 (1976)

    MathSciNet  MATH  Google Scholar 

  38. M. Katsurada, Asymptotic expansions of certain q-series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107, 269–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Katsurada, Complete asymptotic expansions for certain multiple q-integrals and q-differentials of Thomae-Jackson type. Acta Arith. 152, 109–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Komori, K. Matsumoto, H. Tsumura, Barnes multiple zeta-function, Ramanujan’s formula, and relevant series involving hyperbolic functions. J. Ramanujan Math. Soc. 28(1), 49–69 (2013)

    MathSciNet  MATH  Google Scholar 

  41. S. Kongsiriwong, A generalization of Siegel’s method. Ramanujan J. 20(1), 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.N. Lalín, M.D. Rogers, Variations of the Ramanujan polynomials and remarks on ζ(2j + 1)∕π 2j+1. Funct. Approx. Comment. Math. 48(1), 91–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. M.N. Lalín, C.J. Smyth, Unimodularity of roots of self-inversive polynomials. Acta Math. Hungar. 138, 85–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Lerch, Sur la fonction ζ(s) pour valeurs impaires de l’argument. J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira, Coimbra 14, 65–69 (1901)

    Google Scholar 

  45. J. Lewis, D. Zagier, Period functions for Maass wave forms. I. Ann. Math. 153, 191–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. S.-G. Lim, Generalized Eisenstein series and several modular transformation formulae. Ramanujan J. 19(2), 121–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. S.-G. Lim, Infinite series identities from modular transformation formulas that stem from generalized Eisenstein series. Acta Arith. 141(3), 241–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.-G. Lim, Character analogues of infinite series from a certain modular transformation formula. J. Korean Math. Soc. 48(1), 169–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. S.L. Malurkar, On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16, 130–138 (1925/1926)

    Google Scholar 

  50. M. Mikolás, Über gewisse Lambertsche Reihen, I: Verallgemeinerung der Modulfunktion η(τ) und ihrer Dedekindschen Transformationsformel. Math. Z. 68, 100–110 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  51. M.R. Murty, C. Smyth, R.J. Wang, Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26, 107–125 (2011)

    MathSciNet  MATH  Google Scholar 

  52. T.S. Nanjundiah, Certain summations due to Ramanujan, and their generalisations. Proc. Indian Acad. Sci. Sect. A 34, 215–228 (1951)

    MathSciNet  MATH  Google Scholar 

  53. P. Panzone, L. Piovan, M. Ferrari, A generalization of Iseki’s formula. Glas. Mat. Ser. III (66) 46(1), 15–24 (2011)

    Google Scholar 

  54. V. Paşol, A.A. Popa, Modular forms and period polynomials. Proc. Lond. Math. Soc. 107(4), 713–743 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Ramanujan, Some formulae in the analytic theory of numbers. Mess. Math. 45, 81–84 (1916)

    MathSciNet  Google Scholar 

  56. S. Ramanujan, On certain trigonometric sums and their applications in the theory of numbers. Trans. Cambridge Philos. Soc. 22, 259–276 (1918)

    Google Scholar 

  57. S. Ramanujan, Collected Papers (Cambridge University Press, Cambridge, 1927); reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000

    Google Scholar 

  58. S. Ramanujan, Notebooks, 2 vols. (Tata Institute of Fundamental Research, Bombay, 1957; 2nd ed., 2012)

    Google Scholar 

  59. S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988)

    MATH  Google Scholar 

  60. M.B. Rao, M.V. Ayyar, On some infinite series and products. Part I. J. Indian Math. Soc. 15, 150–162 (1923/1924)

    Google Scholar 

  61. S.N. Rao, A proof of a generalized Ramanujan identity. J. Mysore Univ. Sect. B 28, 152–153 (1981–1982)

    Google Scholar 

  62. M.J. Razar, Values of Dirichlet series at integers in the critical strip, in Modular Functions of One Variable VI. Lecture Notes in Mathematics, vol. 627, ed. by J.-P. Serre, D.B. Zagier (Springer, Berlin/Heidelberg, 1977), pp. 1–10

    Google Scholar 

  63. H. Riesel, Some series related to infinite series given by Ramanujan. BIT 13, 97–113 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  64. H.F. Sandham, Some infinite series. Proc. Am. Math. Soc. 5, 430–436 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  65. F.P. Sayer, The sum of certain series containing hyperbolic functions. Fibonacci Quart. 14, 215–223 (1976)

    MathSciNet  MATH  Google Scholar 

  66. O. Schlömilch, Ueber einige unendliche Reihen. Ber. Verh. K. Sachs. Gesell. Wiss. Leipzig 29, 101–105 (1877)

    MATH  Google Scholar 

  67. O. Schlömilch, Compendium der höheren Analysis. zweiter Band, 4th ed. (Friedrich Vieweg und Sohn, Braunschweig, 1895)

    Google Scholar 

  68. C.L. Siegel, A simple proof of \(\eta (-1/\tau ) =\eta (\tau )\sqrt{\tau /i}\). Mathematika 1, 4 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  69. R. Sitaramachandrarao, Ramanujan’s formula for ζ(2n + 1), Madurai Kamaraj University Technical Report 4, pp. 70–117

    Google Scholar 

  70. J.R. Smart, On the values of the Epstein zeta function. Glasgow Math. J. 14, 1–12 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  71. L. Veps̆tas, On Plouffe’s Ramanujan identities. Ramanujan J. 27, 387–408 (2012)

    Google Scholar 

  72. G.N. Watson, Theorems stated by Ramanujan II. J. Lond. Math. Soc. 3, 216–225 (1928)

    Article  MATH  Google Scholar 

  73. A. Weil, Remarks on Hecke’s lemma and its use, in Algebraic Number Theory: Papers Contributed for the Kyoto International Symposium, 1976, ed. by S. Iyanaga (Japan Society for the Promotion of Science, Tokyo, 1977), pp. 267–274

    Google Scholar 

  74. D.B. Zagier, Periods of modular forms and Jacobi theta functions. Invent. Math. 104, 449–465 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  75. N. Zhang, Ramanujan’s formula and the values of the Riemann zeta-function at odd positive integers (Chinese). Adv. Math. Beijing 12, 61–71 (1983)

    MathSciNet  MATH  Google Scholar 

  76. N. Zhang, S. Zhang, Riemann zeta function, analytic functions of one complex variable. Contemp. Math. 48, 235–241 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Berndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berndt, B.C., Straub, A. (2017). Ramanujan’s Formula for ζ(2n + 1). In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds) Exploring the Riemann Zeta Function. Springer, Cham. https://doi.org/10.1007/978-3-319-59969-4_2

Download citation

Publish with us

Policies and ethics