Skip to main content

An Introduction to Riemann’s Life, His Mathematics, and His Work on the Zeta Function

  • Chapter
  • First Online:
Exploring the Riemann Zeta Function

Abstract

Although the zeta function was first defined and used by Euler, it is to Bernhard Riemann, in an article written in 1859, that we owe our view of the zeta function as a meromorphic function in the plane with a functional equation. Riemann is a very remarkable figure in the history of mathematics. The present article describes his career including the major mathematical highlights, and gives some discussion of his published and unpublished work on the zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Blackbourn, History of Germany 1780–1918, 2nd edn. (Blackwell, Oxford, 2003)

    Google Scholar 

  2. H.M. Bui, B. Conrey, M.P. Young, More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150, 35–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Davenport, Multiplicative Number Theory, 3rd edn. (Springer, New York, 2000)

    MATH  Google Scholar 

  4. R. Dedekind, The Life of Bernhard Riemann. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 518–533

    Google Scholar 

  5. P.G.L. Dirichlet, Lectures on Number Theory (with supplements by R. Dedekind, translated by J. Stillwell) (American Mathematical Society, Providence, RI/London Mathematical Society, London, 1999)

    Google Scholar 

  6. H.M. Edwards, Riemann’s Zeta Function (Academic, New York, 1974)

    MATH  Google Scholar 

  7. C.F. Gauss, Disquisitiones generales circa seriem infinitam, I and II. Werke, Vol. III (Georg Olms Verlag, Hildesheim, 1973/1812)

    Google Scholar 

  8. M. Gromov, Almost flat manifolds. J. Differ. Geom. 13, 223–230 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ivic, The Riemann Zeta Function. Theory and Applications (Dover Publications, Inc., Mineola, NY, 2003)

    Google Scholar 

  10. E.E. Kummer, Über die Hypergeometrische Reihe. J. Reine Angew. Math. 15, 39–83 and 127–172 (1836); Collected Papers, Vol. II (Springer, Berlin/New York, 1975)

    Google Scholar 

  11. D. Laugwitz, Bernhard Riemann 1826–1866. Turning Points in the Conception of Mathematics (Birkhäuser Boston Inc., Boston, 2008)

    Google Scholar 

  12. A.-M. Legendre, Théorie des Nombres, 2nd edn. (1808). Reproduction, University of Michigan Library, Ann Arbor, MI

    MATH  Google Scholar 

  13. S.J. Patterson, An Introduction to the Theory of the Riemann Zeta Function (Cambridge University Press, Cambridge, 1988)

    Book  MATH  Google Scholar 

  14. B. Riemann, Foundations for a General Theory of Functions of a Complex Variable. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 1–41

    Google Scholar 

  15. B. Riemann, Contributions to the Theory of the Functions Represented by the Gauss SeriesF(α, β, γ, x). Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 57–75

    Google Scholar 

  16. B. Riemann, Author’s Announcement of the Preceding Paper. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 77–78

    Google Scholar 

  17. B. Riemann, The Theory of Abelian Functions. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 79–134

    Google Scholar 

  18. B. Riemann, On the Number of Primes Less than a Given Magnitude. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 135–143

    Google Scholar 

  19. B. Riemann, On the Propagation of Planar Air Waves of Finite Amplitude. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 145–165

    Google Scholar 

  20. B. Riemann, On the Vanishing ofθ-Functions. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 203–217

    Google Scholar 

  21. B. Riemann, On the Representation of a Function by a Trigonometric Series. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 219–256

    Google Scholar 

  22. B. Riemann, The Hypotheses on Which Geometry is Based. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 257–272

    Google Scholar 

  23. B. Riemann, A Contribution to Electrodynamics. Collected Papers of Bernhard Riemann (translated by R.C. Baker, C. Christensen, H. Orde) (Kendrick Press, Heber City, 2004), pp. 273–278

    Google Scholar 

  24. C.L. Siegel, Über Riemanns Nachlass zur analytischen Zahlentheorie, Quellen und Studien zur Geschichte der Mathematik, Astronomie, und Physik, Abteilung B: Studien, Bd. 2, 45–80

    Google Scholar 

  25. E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd edn. (Oxford University Press, Oxford, 1986)

    MATH  Google Scholar 

  26. H. Weyl, The Concept of a Riemann Surface, 3rd edn. (translated by G.R. MacLane) (Addison-Wesley, Boston, 1953)

    Google Scholar 

  27. A. Zygmund, Trigonometric Series, vols. I and II (Cambridge University Press, Cambridge, 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baker, R. (2017). An Introduction to Riemann’s Life, His Mathematics, and His Work on the Zeta Function. In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds) Exploring the Riemann Zeta Function. Springer, Cham. https://doi.org/10.1007/978-3-319-59969-4_1

Download citation

Publish with us

Policies and ethics