Skip to main content

Capacitive-Based Adiabatic Logic

  • Conference paper
  • First Online:
Reversible Computation (RC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Included in the following conference series:

Abstract

This paper introduces a new paradigm to implement logic gates based on variable capacitance components instead of transistor elements. Using variable capacitors and Bennett clocking, this new logic family is able to discriminate logic states and cascade combinational logic operations. In order to demonstrate this, we use the capacitive voltage divider circuit with the variable capacitor modulated by an input bias state to the set output state. We propose the design of a four-terminal capacitive element which is the building block of this new logic family. Finally, we build a Verilog-A model of an electrically-actuated MEMS capacitive element and analyze the energy transfer and losses within this device during adiabatic actuation. The proposed model will be used for capacitive-based adiabatic logic circuit design and analysis, including construction of reversible gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Teichmann, P.: Adiabatic Logic: Future Trend and System Level Perspective. Springer Science in Advanced Microelectronics, vol. 34. Springer, Netherlands (2012)

    MATH  Google Scholar 

  3. Snider, G.L., Blair, E.P., Boechler, G.P., Thorpe, C.C., Bosler, N.W., Wohlwend, M.J., Whitney, J.M., Lent, C.S., Orlov, A.O.: Minimum energy for computation, theory vs. experiment. In: 11th IEEE International Conference on Nanotechnology, pp. 478–481 (2011)

    Google Scholar 

  4. Spencer, M., Chen, F., Wang, C.C., Nathanael, R., Fariborzi, H., Gupta, A., Kam, H., Pott, V., Jeon, J., Liu, T.-J.K., Markovic, D., Alon, E., Stojanovic, V.: Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications. IEEE J. Solid-State Circ. 46(1), 308–320 (2011)

    Article  Google Scholar 

  5. Houri, S., Billiot, G., Belleville, M., Valentian, A., Fanet, H.: Limits of CMOS technology and interest of NEMS relays for adiabatic logic applications. IEEE Trans. Circuits Syst. I Regul. Pap. 62(6), 1546–1554 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, J.O., Song, Y.-H., Kim, M.-W., Kang, M.-H., Oh, J.-S., Yang, H.-H., Yoon, J.-B.: A sub-1-volt nanoelectromechanical switching device. Nat. Nanotechnol. 8(1), 36–40 (2013)

    Article  Google Scholar 

  7. Pawashe, C., Lin, K., Kuhn, K.J.: Scaling limits of electrostatic nanorelays. IEEE Trans. Electron Devices 60(9), 2936–2942 (2013)

    Article  Google Scholar 

  8. Loh, O.Y., Espinosa, H.D.: Nanoelectromechanical contact switches. Nat. Nanotechnol. 7(5), 283–295 (2012)

    Article  Google Scholar 

  9. Pillonnet, G., Houri, S., Fanet, H.: Adiabatic capacitive logic: a paradigm for low-power logic. In: IEEE International Symposium of Circuits and Systems ISCAS, May 2017 (in press)

    Google Scholar 

  10. Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. Wiley, Hoboken (2004)

    Google Scholar 

  11. Van Caekenberghe, K.: Modeling RF MEMS devices. IEEE Microwave Mag. 13(1), 83–110 (2012)

    Article  Google Scholar 

  12. Paul, S., Schlaffer, A.M., Nossek, J.A.: Optimal charging of capacitors. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(7), 1009–1016 (2000)

    Article  Google Scholar 

  13. Koller, J.G., Athas, W.C.: Adiabatic switching, low energy computing, and the physics of storing and erasing information. In: Proceedings of Physics of Computation Workshop, October 1992, pp. 267–270 (1992)

    Google Scholar 

  14. Jones, T.B., Nenadic, N.G.: Electromechanics and MEMS. Cambridge University Press, New York (2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël Pillonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Galisultanov, A., Perrin, Y., Fanet, H., Pillonnet, G. (2017). Capacitive-Based Adiabatic Logic. In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics