Advertisement

Practical Reasoning About Complex Activities

  • Esteban GuerreroEmail author
  • Helena Lindgren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10349)

Abstract

In this paper, we present an argument-based mechanism to generate hypotheses about belief-desire-intentions on dynamic and complex activities of a software agent. We propose to use a composed structure called activity as unit for agent deliberation analysis, maintaining actions, goals and observations of the world always situated into a context. Activity transformation produces changes in the knowledge base activity structure as well in the agent’s mental states. For example, in car driving as a changing activity, experienced and novice drivers have a different mental attitudes defining distinct deliberation processes with the same observations of the world. Using a framework for understanding activities in social sciences, we endow a software agent with the ability of deliberate, drawing conclusion about current and past events dealing with activity transformations. An argument-based deliberation is proposed which progressively reason about activity segments in a bottom-up manner. Activities are captured as extended logic programs and hypotheses are built using an answer-set programming approach. We present algorithms and an early-stage implementation of our argument-based deliberation process.

Keywords

Practical reasoning Agents Complex activity Argumentation Deliberation Tool 

References

  1. 1.
    Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS, vol. 2711, pp. 552–563. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45062-7_45 CrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based negotiation. In: Rahwan, I., Moraïtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS, vol. 3366, pp. 192–207. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-32261-0_13 CrossRefGoogle Scholar
  3. 3.
    Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation using action based alternating transition systems. Artif. Intell. 171(10), 855–874 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bench-Capon, T., Dunne, P., Bench-Capon, T., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10), 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log. Comput. 22(5), 1207–1254 (2012). http://dx.doi.org/10.1093/logcom/exr033 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dix, J.: A classification theory of semantics of normal logic programs: I. Strong properties. Fundam. Inform. 22(3), 227–255 (1995)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dix, J.: A classification theory of semantics of normal logic programs: Ii. Weak properties. Fundam. Inform. 22(3), 257–288 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Doyle, J.: Rationality and its roles in reasoning. Comput. Intell. 8(2), 376–409 (1992)CrossRefGoogle Scholar
  9. 9.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dung, P.M., Thang, P.M.: Closure and consistency in logic-associated argumentation. J. Artif. Intell. Res. 49, 79–109 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–385 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gómez-Sebastià, I., Nieves, J.C.: Wizarg: visual argumentation framework solving wizard. In: Artificial Intelligence Research and Development Conference, pp. 249–258. IOS Press, Amsterdam (2010)Google Scholar
  13. 13.
    Guerrero, E., Nieves, J.C., Lindgren, H.: Semantic-based construction of arguments: an answer set programming approach. Int. J. Approximate Reasoning 64, 54–74 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Auton. Agent. Multi-Agent Syst. 1(1), 7–38 (1998)CrossRefGoogle Scholar
  15. 15.
    Kaptelinin, V., Nardi, B.A.: Acting with Technology: Activity Theory and Interaction Design. Acting with Technology. MIT Press, Cambridge (2006)Google Scholar
  16. 16.
    Kautz, H.A.: A formal theory of plan recognition and its implementation. In: Allen, J.F., Kautz, H.A., Pelavin, R.N., Tenenberg, J.D. (eds.) Reasoning About Plans, Chap. 2, pp. 69–125. Morgan Kaufmann, San Francisco (1991)CrossRefGoogle Scholar
  17. 17.
    Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: Proceedings of the 5th National Conference on Artificial Intelligence, 11–15 August 1986, Philadelphia, PA, Volume 1: Science, pp. 32–37 (1986)Google Scholar
  18. 18.
    Kuutti, K.: Activity theory as a potential framework for human-computer interaction research. In: Context and Consciousness: Activity Theory and Human-Computer Interaction, pp. 17–44 (1996)Google Scholar
  19. 19.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic (TOCL) 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Leontyev, A.N.: Activity and consciousness. Personality, Moscow (1974)Google Scholar
  21. 21.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Stanford University USA (1968)Google Scholar
  22. 22.
    Naranjo, J.E., Sotelo, M.A., Gonzalez, C., Garcia, R., De Pedro, T.: Using fuzzy logic in automated vehicle control. IEEE Intell. Syst. 22(1), 36–45 (2007)CrossRefGoogle Scholar
  23. 23.
    O’Donnell, M.J.: Introduction: logic and logic programming languages. In: Logic Programming, Chap. 1, vol. 5. Oxford University Press (1998)Google Scholar
  24. 24.
    Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 347–354. ACM (2006)Google Scholar
  25. 25.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. KR 91, 473–484 (1991)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  27. 27.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 619–649 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890, pp. 1–39. Springer, Heidelberg (1995). doi: 10.1007/3-540-58855-8_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computing Science DepartmentUmeå UniversityUmeåSweden

Personalised recommendations