Soil: An Agent-Based Social Simulator in Python for Modelling and Simulation of Social Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10349)


Social networks have a great impact in our lives. While they started to improve and aid communication, nowadays they are used both in professional and personal spheres, and their popularity has made them attractive for developing a number of business models. Agent-based Social Simulation (ABSS) is one of the techniques that has been used for analysing and simulating social networks with the aim of understanding and even forecasting their dynamics. Nevertheless, most available ABSS platforms do not provide specific facilities for modelling, simulating and visualising social networks. This article aims at bridging this gap by introducing an ABSS platform specifically designed for modelling social networks. The main contributions of this paper are: (1) a review and characterisation of existing ABSS platforms; (2) the design of an ABSS platform for social network modelling and simulation; and (3) the development of a number of behaviour models for evaluating the platform for information, rumours and emotion propagation. Finally, the article is complemented by a free and open source simulator.


Social Network Social Network Analysis Network Visualisation Social Graph Exponential Random Graph Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Spanish Ministry of Economy and Competitiveness under the R&D projects SEMOLA (TEC2015-68284-R) and EmoSpaces (RTC-2016-5053-7), by the Regional Government of Madrid through the project MOSI-AGIL-CM (grant P2013/ICE-3019, co-funded by EU Structural Funds FSE and FEDER), and by the European Union through the project MixedEmotions (Grant Agreement no: 141111).


  1. 1.
    Aaby, B.G., et al.: Efficient simulation of agent-based models on multi-GPU and multi-core clusters. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, SIMUTools 2010, Torremolinos, Malaga, Spain. ICST (2010)Google Scholar
  2. 2.
    Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: A scalable runtime platform for multiagent-based simulation. In: Dalpiaz, F., Dix, J., Riemsdijk, M.B. (eds.) EMAS 2014. LNCS, vol. 8758, pp. 81–102. Springer, Cham (2014). doi: 10.1007/978-3-319-14484-9_5 Google Scholar
  3. 3.
    Aschermann, M., et al.: LightJason: a BDI framework inspired by Jason. Technical report IfI-16-04, Depart. Department of Computer Science, TU Clausthal, Germany (2014)Google Scholar
  4. 4.
    Barabáasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berryman, M.J., Angus, S.D.: Tutorials on agent-based modelling with NetLogo and network analysis with Pajek. In: Complex Physical, Biophysical and Econophysical Systems, vol. 1. World Scientific, Hackensack (2010)Google Scholar
  6. 6.
    Blanco-Moreno, D., Cárdenas, M., Fuentes-Fernández, R., Pavón, J.: Krowdix: agent-based simulation of online social networks. In: Bazzan, A.L.C., Pichara, K. (eds.) IBERAMIA 2014. LNCS, vol. 8864, pp. 587–598. Springer, Cham (2014). doi: 10.1007/978-3-319-12027-0_47 Google Scholar
  7. 7.
    Bommel, P., et al.: Cormas, an agent-based simulation platform for coupling human decisions with computerized dynamics. In: ISAGA 2015: Hybrid Simulation and Gaming in the Network Society (2015)Google Scholar
  8. 8.
    Brandes, U., et al.: Graph markup language (GraphML). In: Handbook of Graph Drawing and Visualization 20007 (2013)Google Scholar
  9. 9.
    Campuzano, F., Garcia-Valverde, T., Garcia-Sola, A., Botia, J.A.: Flexible simulation of ubiquitous computing environments. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds.) Ambient Intelligence - Software and Applications. AINSC, vol. 92, pp. 189–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fan, R., et al.: Anger is more influential than joy: sentiment correlation in Weibo. In: CoRR abs/1309.2402 (2013)Google Scholar
  11. 11.
    Granovetter, M.: The impact of social structure on economic outcomes. J. Econ. Perspect. 19(1), 33–50 (2005)CrossRefGoogle Scholar
  12. 12.
    Group, G.W.: GEXF file format. GEXF Working Group (2009)Google Scholar
  13. 13.
    Guille, A., et al.: Information diffusion in online social networks: a survey. ACM SIGMOD Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  14. 14.
    Gutknecht, O., Ferber, J.: The MadKit agent platform architecture. In: Wagner, T., Rana, O.F. (eds.) AGENTS 2000. LNCS, vol. 1887, pp. 48–55. Springer, Heidelberg (2001). doi: 10.1007/3-540-47772-1_5 CrossRefGoogle Scholar
  15. 15.
    Hamill, L., Gilbert, N.: Social circles: a simple structure for agent-based social network models. J. Artif. Soc. Soc. Simul. 12(2), 3 (2009)Google Scholar
  16. 16.
    Herrler, R., Fehler, M.: SeSAm: implementation of agent based simulation using visual programming. In: Components (2006)Google Scholar
  17. 17.
    Hill, A.L., et al.: Emotions as infectious diseases in a large social network: the SISa model. Proc. Roy. Soc. Lond. B Biol. Sci. 277(1701), 3827–3835 (2010)CrossRefGoogle Scholar
  18. 18.
    Himsolt, M.: GML: a portable graph file format. Technical report. Universität Passau (1997)Google Scholar
  19. 19.
    Holzhauer, S.: Developing a Social Network Analysis and Visualization Module for Repast Models, vol. 4. Kassel University Press GmbH, Kassel (2010)Google Scholar
  20. 20.
    Kiesling, E., et al.: Agent-based simulation of innovation diffusion: a review. CEJOR 20(2), 183–230 (2012)CrossRefGoogle Scholar
  21. 21.
    Kodia, Z., Said, L.B., Ghedira, K.: Stylized facts study through a multi-agent based simulation of an artificial stock market. In: Li Calzi, M., Milone, L., Pellizzari, P. (eds.) Progress in Artificial Economics. Lecture Notes in Economics and Mathematical Systems, vol. 645, pp. 27–38. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13947-5_3 CrossRefGoogle Scholar
  22. 22.
    Korda, H., Itani, Z.: Harnessing social media for health promotion and behavior change. Health Promot. Pract. 14(1), 15–23 (2013)CrossRefGoogle Scholar
  23. 23.
    Liu, D., Chen, X.: Rumor propagation in online social networks like twitter - a simulation study. In: 2011 Third International Conference on Multimedia Information Networking and Security, November 2011Google Scholar
  24. 24.
    Luke, S.: MASON: a multiagent simulation environment. Simulation 81, 517–527 (2005)CrossRefGoogle Scholar
  25. 25.
    van Maanen, P.-P., van der Vecht, B.: An agent-based approach to modeling online social influence. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM (2013)Google Scholar
  26. 26.
    Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In: Simulation Conference, 2005 Proceedings of the Winter. IEEE (2005)Google Scholar
  27. 27.
    Madey, G., et al.: Agent-based modeling of open source using Swarm. In: AMCIS 2002 Proceedings (2002)Google Scholar
  28. 28.
    Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: Proceedings of the 14th Python in Science Conference (SCIPY 2015) (2015)Google Scholar
  29. 29.
    Matloff, N.: Introduction to discrete-event simulation and the Simpy language. In: Davis, CA. Dept of Computer Science. University of California at Davis. Retrieved 2 Aug 2008Google Scholar
  30. 30.
    McKinney, W.: Python for Data Analysis. O’Reilly, Sebastopol (2012)Google Scholar
  31. 31.
    Nikolai, C., Madey, G.: Tools of the trade: a survey of various agend based modeling platforms. J. Artif. Soc. Soc. Simul. 12(2), 2 (2009)Google Scholar
  32. 32.
    Ozik, J., Collier, N., Combs, T., Macal, C.M., North, M.: Repast simphony statecharts. J. Artif. Soc. Soc. Simul. 18(3), 11 (2015). Google Scholar
  33. 33.
    Padilla, J.J., et al.: Leveraging social media data in agentbased simulations. In: Proceedings of the 2014 Annual Simulation Symposium. Society for Computer Simulation International (2014)Google Scholar
  34. 34.
    Railsback, S.F., et al.: Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  35. 35.
    Rand, W., Wilensky, U.: An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, Cambridge (2015)Google Scholar
  36. 36.
    Ratna, N.N., et al.: Diffusion and social networks: revisiting medical innovation with agents. In: Qudrat-Ullah, H., Spector, J.M., Davidsen, P.I. (eds.) Complex Decision Making, pp. 247–265. Springer, Heidelberg (2008)Google Scholar
  37. 37.
    Robinson, S., et al.: Simulation model reuse: definitions, benefits and obstacles. Simul. Model. Pract. Theory 12(7), 479–494 (2004)CrossRefGoogle Scholar
  38. 38.
    Ryczko, K., et al.: Hashkat: large-scale simulations of online social networks. In: arXiv preprint arXiv (2016)Google Scholar
  39. 39.
    Sala, A., et al.: Measurement-calibrated graph models for social network experiments. In: Proceedings of the 19th International Conference on World Wide Web. ACM (2010)Google Scholar
  40. 40.
    Serrano, E., Iglesias, C.A.: Validating viral marketing strategies in Twitter via agent-based social simulation. Expert Syst. Appl. 50(1), 140–150 (2016)CrossRefGoogle Scholar
  41. 41.
    Serrano, E., et al.: Towards a holistic framework for the evaluation of emergency plans in indoor environments. Sensors 14(3), 4513–4535 (2014)CrossRefGoogle Scholar
  42. 42.
    Staudt, C., et al.: NetworKit: an interactive tool suite for high-performance network analysis. In: CoRR abs/1403.3005 (2014)Google Scholar
  43. 43.
    Szufel, P., et al.: Controlling simulation experiment design for agent-based models using tree representation of parameter space. Found. Comput. Decis. Sci. 38(4), 277–298 (2013)Google Scholar
  44. 44.
    Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67(5), 056104 (2003)CrossRefGoogle Scholar
  45. 45.
    Wang, F.Y., et al.: Social computing: from social informatics to social intelligence, March 2007Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Intelligent Systems Group, DIT, E.T.S. de Ingenieros de TelecomunicaciónUniversidad Politécnica de MadridMadridSpain

Personalised recommendations