Advertisement

GIS-Based Data Synthesis and Visualization

  • Duccio RocchiniEmail author
  • Carol X. Garzon-Lopez
  • A. Marcia Barbosa
  • Luca Delucchi
  • Jonathan E. Olandi
  • Matteo Marcantonio
  • Lucy Bastin
  • Martin Wegmann
Chapter

Abstract

Synthesizing and properly visualizing data in 2D systems is a key issue when aiming at explaining spatial patterns by spatial processes.

In this chapter we address the topics synthesis and visualization in relation to following ecological issues: (1) synthesizing species distribution models relying on virtual species, (2) visualizing spatial uncertainty in species distribution based on cartograms, (3) fuzzy methods to synthesize species distribution uncertainty, (4) remote sensing data synthesis by exploratory analysis and replotting data in new systems, (5) measuring and visualizing ecological diversity from space based on generalized entropy, and (6) neutral landscape for testing ecological theories. We will make use of examples from the free and open source software GRASS GIS and R.

References

  1. Barbosa AM (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858CrossRefGoogle Scholar
  2. Barbosa AM, Pautasso M, Figueiredo D (2013) Species- people correlations and the need to account for survey effort in biodiversity analyses. Divers Distrib 19:1188–1197CrossRefGoogle Scholar
  3. Bivand R, Krug R, Neteler M, Jeworutzki S (2016) rgrass7 – interface Between GRASS 7 Geographical Information System and R. R software packageGoogle Scholar
  4. Boggs S (1949) An atlas of ignorance: a needed stimulus to honest thinking and hard work. Proc Am Philos Soc 93:9–258Google Scholar
  5. Comber A, Fisher P, Brunsdon C, Khmag A (2012) Spatial analysis of remote sensing image classification accuracy. Remote Sens Environ 127:237–246CrossRefGoogle Scholar
  6. Comber A, See L, Fritz S, Van der Velde M, Perger C, Foody GM (2013) Using ontrol data to determine the reliability of volunteered geographic information about land cover. Int J Appl Earth Obs Geoinf 23:37–48CrossRefGoogle Scholar
  7. Foody GM (2011) Impacts of imperfect reference data on the apparent accuracy of species presence/absence models and their predictions. Glob Ecol Biogeogr 20:498–508CrossRefGoogle Scholar
  8. Fourier J (1822) Thorie Analytique de la Chaleur. Didot, ParisGoogle Scholar
  9. Gastner M, Newman M (2004) Diffusion-based method for producing density- equalizing maps. Proc Natl Acad Sci U S A 15:7499–7504CrossRefGoogle Scholar
  10. Gopal S, Woodcock C (1994) Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogramm Eng Remote Sens 60:181–188Google Scholar
  11. Hanspach J, Kuehn I, Schweiger O, Pompe S, Klotz S (2011) Geographical patterns in prediction errors of species distribution models. Glob Ecol Biogeogr 20:779–788CrossRefGoogle Scholar
  12. Haralick R, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans SMC 6:610–621Google Scholar
  13. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  14. Imre AR, Cseh D, Neteler M, Rocchini D (2011) Korcak dimension as a novel indicator of landscape fragmentation and re-forestation. Ecol Indic 11:1134–1138CrossRefGoogle Scholar
  15. Mandelbrot BB, Blumen A (1989) Fractal geometry: What is it, and what does it do? Proc R Soc Lond A 423:3–16CrossRefGoogle Scholar
  16. Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130CrossRefGoogle Scholar
  17. R Development Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  18. Rényi A (1970) Probability theory. North Holland Publishing Company, AmsterdamGoogle Scholar
  19. Ricotta C (2005) On possible measures for evaluating the degree of uncertainty of fuzzy thematic maps. Int J Remote Sens 26:5573–5583CrossRefGoogle Scholar
  20. Ricotta C, Avena G (2003) On the relationship between Pielou’s evenness and landscape dominance within the context of Hill’s diversity profiles. Ecol Indic 2:361–365CrossRefGoogle Scholar
  21. Rocchini D, Hortal J, Lengyel S, Lobo JM, Jiménez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226. doi: 10.1177/0309133311399491 CrossRefGoogle Scholar
  22. Rocchini D, Foody GM, Nagendra H, Ricotta C, Anand M, He KS, Amici V, Kleinschmit B, Foerster M, Schmidtlein S, Feilhauer H, Ghisla A, Metz M, Neteler M (2013) Uncertainty in ecosystem mapping by remote sensing. Comput Geosci 50:128–135. doi: 10.1016/j.cageo.2012.05.022 CrossRefGoogle Scholar
  23. Rocchini D, Boyd DS, Féret JB, Foody GM, He KS, Lausch A, Nagendra H, Wegmann M, Pettorelli N (2016) Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sens Ecol Conserv 2:25–36. doi: 10.1002/rse2.9 CrossRefGoogle Scholar
  24. Walsh JL (1923) A closed set of orthogonal functions. Am J Math 45:5–24CrossRefGoogle Scholar
  25. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Duccio Rocchini
    • 1
    • 2
    • 3
    Email author
  • Carol X. Garzon-Lopez
    • 4
  • A. Marcia Barbosa
    • 5
  • Luca Delucchi
    • 3
  • Jonathan E. Olandi
    • 3
  • Matteo Marcantonio
    • 6
  • Lucy Bastin
    • 7
    • 8
  • Martin Wegmann
    • 9
  1. 1.Center Agriculture Food EnvironmentUniversity of TrentoS. Michele all’Adige (TN)Italy
  2. 2.Centre for Integrative BiologyUniversity of TrentoPovo (TN)Italy
  3. 3.Department of Biodiversity and Molecular EcologyFondazione Edmund Mach, Research and Innovation CentreSan Michele all’Adige, TrentoItaly
  4. 4.Ecology and Vegetation Physiology Group (EcoFiv)Universidad de los AndesBogotàColombia
  5. 5.Centro de Investigacao em Biodiversidade e Recursos Geneticos (CIBIO), InBIO Research Network in Biodiversity and Evolutionary BiologyUniversity of EvoraEvoraPortugal
  6. 6.Department of Pathology, Microbiology, and ImmunologySchool of Veterinary Medicine, University of California DavisDavisUSA
  7. 7.School of Computer Science, Aston UniversityAstonUK
  8. 8.European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, School of Computer ScienceAston UniversityAstonUK
  9. 9.Department of Remote Sensing, Remote Sensing and Biodiversity Research GroupUniversity of WuerzburgWuerzburgGermany

Personalised recommendations