Skip to main content

Metallic Coatings in Solid-Phase Microextraction: Environmental Applications

Abstract

Solid-phase microextraction (SPME) is a non-exhaustive extraction and preconcentration technique based on the partitioning of the compounds present in a sample to a sorbent material. The sorbent material is immobilized onto the surface of a solid support, forming a SPME fiber of roughly 1 cm long and few micrometers of thickness. This microextraction approach is simple, solvent-free, fast, portable, it provides high preconcentration factors, and it can be automated easily. The main disadvantage of SPME is linked to the relatively low number of fibers commercially available, which limits the selectivity and applicability of this extraction method. In this sense, current trends are focused on the development of novel sorbent coatings for SPME. Among novel materials explored up-to-date, metal-based coatings have been successfully exploited in environmental analysis. They are characterized by high mechanical, chemical and thermal stability, ease of preparation and enhanced extraction performance.

Keywords

  • Solid-phase Microextraction (SPME)
  • SPME Fiber
  • Metal Oxide Coatings
  • SPME Coatings
  • Benzene, Toluene, Ethylbenzene And Xylene (BTEX)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59906-9_7
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59906-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

References

  1. C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fiber. Anal. Chem. 62, 2145–2148 (1990)

    CrossRef  Google Scholar 

  2. A. Spietelun, Ł. Marcinkowski, M. de la Guardia, et al., Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A 1321, 1–13 (2013)

    CrossRef  Google Scholar 

  3. J. Pawliszyn, Theory of solid-phase microextraction. J. Chromatogr. Sci. 38, 270–278 (2000)

    CrossRef  Google Scholar 

  4. É.A. Souza-Silva, R. Jiang, A. Rodríguez-Lafuente, et al., A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trac-Trends Anal Chem 71, 224–235 (2015)

    CrossRef  Google Scholar 

  5. É.A. Souza-Silva, E. Gionfriddo, J. Pawliszyn, A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. Trac-Trends Anal Chem 71, 236–248 (2015)

    CrossRef  Google Scholar 

  6. É.A. Souza-Silva, N. Reyes-Garcés, G.A. Gómez-Ríos, et al., A critical review of the state of the art of solid-phase microextraction of complex matrices III. Biological and clinical applications. Trac-Trends Anal Chem 71, 249–264 (2015)

    CrossRef  Google Scholar 

  7. J. Li, Y.-B. Wang, K.-Y. Li, et al., Advances in different configurations of solid-phase microextraction and their applications in food and environmental analysis. Trac-Trends Anal Chem 72, 141–152 (2015)

    CrossRef  Google Scholar 

  8. H. Piri-Moghadam, F. Ahmadi, J. Pawliszyn, A critical review of solid phase microextraction for analysis of water samples. Trac-Trends Anal Chem 85, 133–143 (2016)

    CrossRef  Google Scholar 

  9. A. Mehdinia, M.O. Aziz-Zanjani, Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trac-Trends Anal Chem 42, 205–215 (2013)

    CrossRef  Google Scholar 

  10. J. Tian, J. Xu, F. Zhu, et al., Application of nanomaterials in sample preparation. J. Chromatogr. A 1300, 2–16 (2013)

    CrossRef  Google Scholar 

  11. B.H. Fumes, M.R. Silva, F.N. Andrade, et al., Recent advances and future trends in new materials for sample preparation. Trac-Trends Anal Chem 71, 9–25 (2015)

    CrossRef  Google Scholar 

  12. H. Yu, T.D. Ho, J.L. Anderson, Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. Trac-Trends Anal Chem 45, 219–232 (2013)

    CrossRef  Google Scholar 

  13. X.-Y. Song, J. Chen, Y.-P. Shi, Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. Trac-Trends Anal Chem 86, 263–275 (2017)

    CrossRef  Google Scholar 

  14. R. Sitko, B. Zawisza, E. Malicka, Graphene as a new sorbent in analytical chemistry. Trac-Trends Anal Chem 51, 33–43 (2013)

    CrossRef  Google Scholar 

  15. D.-L. Deng, J.-Y. Zhang, C. Chen, et al., Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. J. Chromatogr. A 1219, 195–200 (2012)

    CrossRef  Google Scholar 

  16. P. Rocío-Bautista, I. Pacheco-Fernández, J. Pasán, et al., Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—a review. Anal. Chim. Acta 939, 26–41 (2016)

    CrossRef  Google Scholar 

  17. M.B. Gholivand, M.M. Abolghasemi, P. Fattahpour, A hexagonally ordered nanoporous silica-based fiber coating for SPME of polycyclic aromatic hydrocarbons from water followed by GC–MS. Chromatographia 74, 807–815 (2011)

    CrossRef  Google Scholar 

  18. P. Olszowy, M. Szultka, T. Ligor, et al., Fibers with polypyrrole and polythiophene phases for isolation and determination of adrenolytic drugs from human plasma by SPME-HPLC. J. Chromatogr. B 878, 2226–2234 (2010)

    CrossRef  Google Scholar 

  19. J. Feng, M. Sun, H. Liu, et al., Au nanoparticles as a novel coating for solid-phase microextraction. J. Chromatogr. A 1217, 8079–8086 (2010)

    CrossRef  Google Scholar 

  20. P.A. Azar, M.S. Tehrani, S. Mohammadiazar, et al., A novel strategy to increase performance of solid-phase microextraction fibers: electrodeposition of sol-gel films on highly porous substrate. J. Sep. Sci. 35, 3354–3360 (2012)

    CrossRef  Google Scholar 

  21. M. Karimi, F. Aboufazeli, H.R.L.Z. Zhad, et al., Determination of polycyclic aromatic hydrocarbons in Persian Gulf and Caspian Sea: gold nanoparticles fiber for a head space solid phase micro extraction. Bull. Environ. Contam. Toxicol. 90, 291–295 (2013)

    CrossRef  Google Scholar 

  22. Y. Yang, Y. Li, H. Liu, et al., Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. J. Chromatogr. A 1372, 25–33 (2014)

    Google Scholar 

  23. H. Liu, L. Liu, X. Wang, et al., Preparation of a robust and sensitive gold-coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental waters. Anal. Lett. 47, 1759–1771 (2014)

    CrossRef  Google Scholar 

  24. J. Feng, M. Sun, Y. Bu, et al., Nanostructured copper-coated solid-phase microextraction fiber for gas chromatographic analysis of dibutyl phthalate and diethylhexyl phthalate environmental estrogens. J. Sep. Sci. 38, 128–133 (2015)

    CrossRef  Google Scholar 

  25. C. Liu, X. Zhang, L. Li, et al., Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst 140, 4668–4675 (2015)

    CrossRef  Google Scholar 

  26. L. Hai-Xia, Y. Yao-Xia, M. Ming-Guang, et al., Self-assembled gold nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water. Chin. J. Anal. Chem. 43, 207–211 (2015)

    CrossRef  Google Scholar 

  27. Y. Zhang, Y. Yang, Y. Li, et al., Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction. Anal. Chim. Acta 876, 55–62 (2015)

    CrossRef  Google Scholar 

  28. Y. Zhang, W. Song, Y. Yang, et al., Self-assembly of mercaptoundecanol on cedar-like Au nanoparticle coated stainless steel fiber for selective solid-phase microextraction. Anal. Methods 7, 7680–7689 (2015)

    CrossRef  Google Scholar 

  29. A. Gutiérrez-Serpa, P. Rocío-Bautista, V. Pino, et al., Gold-nanoparticles-based solid-phase microextraction coatings for determining organochlorine pesticides in aqueous environmental samples. J. Sep. Sci. 40(9), 2009–2021 (2017)

    Google Scholar 

  30. D. Djozan, Y. Assadi, S.H. Haddadi, Anodized aluminum wire as a solid-phase microextraction fiber. Anal. Chem. 73, 4054–4058 (2001)

    CrossRef  Google Scholar 

  31. M.B. Gholivand, M. Shamsipur, M. Shamizadeh, et al., Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal. Chim. Acta 822, 30–36 (2014)

    CrossRef  Google Scholar 

  32. A. Mehdinia, M.F. Mousavi, M. Shamsipur, Nano-structured lead dioxide as a novel stationary phase for solid-phase microextraction. J. Chromatogr. A 1134, 24–31 (2006)

    CrossRef  Google Scholar 

  33. M.H. Banitaba, S.S.H. Davarani, A. Pourahadi, Solid-phase microextraction of phthalate esters from aqueous media by electrophoretically deposited TiO2 nanoparticles on a stainless steel fiber. J. Chromatogr. A 1283, 1–8 (2013)

    CrossRef  Google Scholar 

  34. S. Liu, L. Xie, J. Zheng, et al., Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal. Chim. Acta 878, 109–117 (2015)

    CrossRef  Google Scholar 

  35. D. Cao, J. Lü, J. Liu, et al., In situ fabrication of nanostructured titania coating on the surface of titanium wire: a new approach for preparation of solid-phase microextraction fiber. Anal. Chim. Acta 611, 56–61 (2008)

    CrossRef  Google Scholar 

  36. H. Liu, D. Wang, L. Ji, et al., A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J. Chromatogr. A 1217, 1898–1903 (2010)

    CrossRef  Google Scholar 

  37. E. Ghasemi, M. Sillanpää, Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography–mass spectrometry for preconcentration and determination of ultra-traces of chloro benzenes in environmental samples. Talanta 130, 322–327 (2014)

    CrossRef  Google Scholar 

  38. R. Alizadeh, N.M. Najafi, S. Kharrazi, A new solid phase micro extraction for simultaneous head space extraction of ultra traces of polar and non-polar compounds. Anal. Chim. Acta 689, 117–121 (2011)

    CrossRef  Google Scholar 

  39. D. Djozan, L. Abdollahi, Anodized zinc wire as a solid-phase microextraction fiber. Chromatographia 57, 799–804 (2003)

    CrossRef  Google Scholar 

  40. D. Budziak, E. Martendal, E. Carasek, Preparation and application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction. J. Chromatogr. A 1164, 18–24 (2007)

    CrossRef  Google Scholar 

  41. L. Li, R. Guo, Y. Li, et al., In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography–UV detection. Anal. Chim. Acta 867, 38–46 (2015)

    CrossRef  Google Scholar 

  42. L. Wang, S. Tang, S. Wang, et al., Cadmium sulfide nanoparticles as a novel coating for solid-phase microextraction. J. Sep. Sci. 38, 1326–1333 (2015)

    CrossRef  Google Scholar 

  43. M.A. Farajzadeh, N.A. Rahmani, Electrolytically produced copper(I) chloride on the copper wire as an excellent sorbent for some amines. Talanta 65, 700–704 (2005)

    CrossRef  Google Scholar 

  44. D. Budziak, E. Martendal, E. Carasek, New poly(ethylene glycol) solid-phase microextraction fiber employing zirconium oxide electrolytically deposited onto a NiTi alloy as substrate for sol–gel reactions. J. Chromatogr. A 1198–1199, 54–58 (2008)

    CrossRef  Google Scholar 

  45. D. Budziak, E. Martendal, E. Carasek, Preparation and characterization of new solid-phase microextraction fibers obtained by sol–gel technology and zirconium oxide electrodeposited on NiTi alloy. J. Chromatogr. A 1187, 34–39 (2008)

    CrossRef  Google Scholar 

  46. D. Wang, Q. Wang, Z. Zhang, et al., ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability. Analyst 137, 476–480 (2012)

    CrossRef  Google Scholar 

  47. H. Bagheri, A. Roostaie, Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating. Anal. Chim. Acta 863, 20–28 (2015)

    CrossRef  Google Scholar 

  48. H. Bagheri, A. Roostaie, Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating. J. Chromatogr. A 1375, 8–16 (2015)

    CrossRef  Google Scholar 

  49. L. Yang, J. Zhang, F. Zhao, et al., Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene)@gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons. J. Chromatogr. A 1471, 80–86 (2016)

    Google Scholar 

  50. K. Farhadi, R. Tahmasebi, R. Maleki, Preparation and application of the titania sol–gel coated anodized aluminum fibers for headspace solid phase microextraction of aromatic hydrocarbons from water samples. Talanta 77, 1285–1289 (2009)

    CrossRef  Google Scholar 

  51. L. Wang, X. Hou, J. Li, et al., Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction. J. Sep. Sci. 38, 2439–2446 (2015)

    CrossRef  Google Scholar 

  52. L. Xu, H. Suo, X. Liang, et al., Au nanoparticle decorated graphene oxide as a novel coating for solid-phase microextraction. RSC Adv. 5, 41536–41543 (2015)

    CrossRef  Google Scholar 

  53. K. Farhadi, S. Bochani, M. Hatami, et al., Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers. J. Sep. Sci. 37, 1578–1584 (2014)

    CrossRef  Google Scholar 

  54. M. Saraji, N. Mehrafza, Mesoporous carbon–zirconium oxide nanocomposite derived from carbonized metal organic framework: a coating for solid-phase microextraction. J. Chromatogr. A 1460, 33–39 (2016)

    Google Scholar 

  55. H. Wang, Y. Zhang, M. Zhang, et al., Gold nanoparticle modified NiTi composite nanosheet coating for efficient and selective solid phase microextraction of polycyclic aromatic hydrocarbons. Anal. Methods 8, 6064–6073 (2016)

    CrossRef  Google Scholar 

  56. B. Li, Y. Shi, J. Cui, et al., Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy. Anal. Chim. Acta 923, 66–73 (2016)

    CrossRef  Google Scholar 

  57. Y. Li, Y. Yang, H. Liu, et al., Fabrication of a novel Ti–TiO2–ZrO2 fiber for solidphase microextraction followed by highperformance liquid chromatography for sensitive determination of UV filters in environmental water samples. Anal. Methods 6, 8519–8525 (2014)

    CrossRef  Google Scholar 

  58. J. Feng, H. Qiu, X. Liu, et al., The development of solid-phase microextraction fibers with metal wires as supporting substrates. Trac-Trends Anal Chem 46, 44–58 (2013)

    CrossRef  Google Scholar 

  59. M.O. Aziz-Zanjani, A. Mehdinia, A review on procedures for the preparation of coatings for solid phase microextraction. Microchim. Acta 181, 1169–1190 (2014)

    CrossRef  Google Scholar 

  60. F. Pena-Pereira, R.M.B.O. Duarte, A.C. Duarte, Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trac-Trends Anal Chem 40, 90–105 (2012)

    CrossRef  Google Scholar 

  61. H. Liu, L. Ji, J. Li, et al., Magnetron sputtering Si interlayer: A protocol to prepare solid phase microextraction coatings on metal-based fiber. J. Chromatogr. A 1218, 2835–2840 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Pino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pacheco-Fernández, I., Gutiérrez-Serpa, A., Afonso, A.M., Pino, V. (2018). Metallic Coatings in Solid-Phase Microextraction: Environmental Applications. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)