Skip to main content

Abstract

Thin films solar cells (TFSCs) coated from different types of inks have yielded best efficiencies from 8 to ~13 %. This review depicts a specific group of non-vacuum methods for depositing kesterite Cu2ZnSnS4 (CZTS) solar cell absorber, which we characterized as direct ink coating (DIC) technique. The main objective of this chapter is to review the CZTS inks prepared by microwave process technique. A number of techniques including, hot injection method, solvo-thermal process, sonochemical and microwave-assisted route have been employed to synthesized CZTS ink. However, microwave is a rapid and single step process which has the potential to yield high-quality CZTS nanoparticle ink within minutes. CZTS films have been coated with different structures using such inks. Different properties of CZTS films such as, structural, compositional, optical, electrical and photovoltaic have also been reviewed. The properties of the TFSCs are discussed in the context of the processing techniques resulting in complete devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Azimi, Y. Hou, C.J. Brabec, Energy Environ. Sci. 7, 1829 (2014)

    Article  Google Scholar 

  2. K. Ito, Copper zinc tin sulfide-based thin-film solar cells (Wiley, Chichester, 2015)

    Google Scholar 

  3. R.H. Bube, Photovoltaic materials, series on properties of semiconductor materials, vol 1 (Imperial College Press, London, 1998)

    Book  Google Scholar 

  4. S. Ji, C. Ye, Rev. Adv. Sci. Eng. 1, 42 (2012)

    Article  Google Scholar 

  5. http://www.semiconductor-today.com/news_items/2013/NOV/ZSW_261113.shtml

  6. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi Adv, Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  7. J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, D.B. Mitzi Adv, Adv Mater 26, 7427 (2014)

    Article  Google Scholar 

  8. B. Flynn, W. Wang, C.-H. Chang, G.S. Herman, Phys. Status Solidi (a) 209, 2186 (2012)

    Article  Google Scholar 

  9. S. Riha, B. Parkinson, A. Prieto, J. Am. Chem. Soc. 131, 12054 (2009)

    Article  Google Scholar 

  10. Q. Guo, H. Hillhouse, R. Agrawal, J.Am. Chem. Soc. 131, 11672 (2009)

    Article  Google Scholar 

  11. Y. Liu, J. Xu, Z. Ni, G. Fang, W. Tao, J. Alloys Compd. 630, 23 (2015)

    Article  Google Scholar 

  12. M. Cao, Y. Shen, J. Cryst. Growth 318, 1117 (2011)

    Article  Google Scholar 

  13. R. AdhiWibowo, E. Soo Lee, B. Munir, K.H. Kim, Phys. Status Solidi (a) 204, 3373 (2007)

    Article  Google Scholar 

  14. N. Mirbagheri, S. Engberg, A. Crovetto, S.B. Simonsen, O. Hansen, Y.M. Lam, J. Schou, Nanotechnology 27, 185603 (2016)

    Article  Google Scholar 

  15. S. Engberg, Z. Li, J. Yan Lek, Y. Ming Lamb, J. Schoua, RSC Adv. 5, 96593 (2015)

    Article  Google Scholar 

  16. C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009)

    Article  Google Scholar 

  17. T. Kameyama, T. Osaki, K.-I. Okazaki, T. Sb, A. Kudo, S. de Kuwabata, T. Torimoto, J. Mater. Chem. 20, 5319 (2010)

    Article  Google Scholar 

  18. Y.-L. Zhou, W.-H. Zhou, Y.-F. Du, M. Li, S.-X. Wu, Mater. Lett. 65, 1535 (2011)

    Article  Google Scholar 

  19. O. Zaberca, F. Oftinger, J.Y. Chane-Ching, L. Datas, A. Lafond, P. Puech, A. Balocchi, D. Lagarde, X. Marie, Nanotechnology 23, 18540 (2012)

    Article  Google Scholar 

  20. X. Yang, J. Xu, L. Xi, Y. Yao, Q. Yang, C.Y. Chung, C. Lee, J. Nanopart. Res. 14, 931 (2012)

    Article  Google Scholar 

  21. R. Kumar, B. Ryu, S. Chandramohan, J. Seol, S. Lee, C. Hong Mater. Lett. 86, 174 (2012)

    Article  Google Scholar 

  22. S. Shin, J. Han, C. Park, A. Moholkar, J. Lee, J. Kim, J. Alloys, Compd. 516, 96 (2012)

    Article  Google Scholar 

  23. W. Wang, H. Shen, X. He, Mater. Res. Bull. 48, 3140 (2013)

    Article  Google Scholar 

  24. P. Sarswat, M. Free, J. Cryst. Growth 372, 87 (2013)

    Article  Google Scholar 

  25. G. Wang, P. Chen, C. Tseng, Cryst. Eng. Comm 15, 9863 (2013)

    Article  Google Scholar 

  26. T. Knustson, P. Hanson, E. Aydil, R. Penn, Chem. Commun. 50, 5902 (2014)

    Article  Google Scholar 

  27. Y. Zhao, W. Tao, J. Liu, A. Wei, Mater Lett 148, 63 (2015)

    Article  Google Scholar 

  28. W. Wang, H. Shen, H. Yao, J. Li, J. Jiao, J. Mater, Sci. Mater. Electron 26, 1449 (2015)

    Article  Google Scholar 

  29. Y.-H. Lin, S. Das, C.-Y. Yang, J.-C. Sung, C.-H. Lu, J. Alloys Compd. 632, 354 (2015)

    Article  Google Scholar 

  30. T. Martini, C. Chubilleau, O. Poncelet, A. Ricaud, A. Blayo, C. Martin, K. Tarasova, Sol. Energy Mater. Sol. Cells 144, 657 (2016)

    Article  Google Scholar 

  31. H.W. Hillhouse, M.C. Beard, Curr Opin, Colloid Interface Sci 14, 245–249 (2009)

    Article  Google Scholar 

  32. R. Kumar, B. Ryu, S. Chandramohan, J. Seol, S. Lee, C. Hong, Mater. Lett. 86, 174 (2012)

    Article  Google Scholar 

  33. S. Shin, J. Han, C. Park, A. Moholkar, J. Lee, J. Kim, J. Alloys Compd. 516, 96 (2012)

    Article  Google Scholar 

  34. C.O. Kappe Angew, Chem. Int. Ed 43, 6250 (2004)

    Article  Google Scholar 

  35. B.J. Hayes, Microwave synthesis: chemistry at the speed of light (CEM Publications, Matthews, NC, 2002)

    Google Scholar 

  36. T.K. Chaudhuri, D. Tiwari, Sol. Energy Mater. Sol. Cells 101, 46 (2012)

    Article  Google Scholar 

  37. Jardine, F. H. in Emeleus, H. J. and Sharpe, A. G. (Ed.), Advances in Inorganic chemistry and Radiochemistry, 17 (1975) 133, Academic Press, USA

    Google Scholar 

  38. P.R. Ghediya, T.K. Chaudhuri, D. Vankhade, J. Alloys Compd. 685, 498 (2015)

    Article  Google Scholar 

  39. P.R. Ghediya, T.K. Chaudhuri, J.R. Ray, AIP Conf. Proc. 1728, 020020 (2016)

    Article  Google Scholar 

  40. P.R. Ghediya, T.K. Chaudhuri, J. Phys. D. Appl. Phys. 48, 455109 (2015)

    Article  Google Scholar 

  41. R. Wagner, H.D. Wiemhöfer, J. Phys. Chem. Solids 44, 801 (1983)

    Article  Google Scholar 

  42. C. Malerba, Cu2ZnSnS4 thin films and solar cells: material and device characterization, an investigation into the stoichiometry effect on CZTS microstructure and optoelectronic properties, Ph.D. Thesis, University of Trento, Italy, 2014

    Google Scholar 

  43. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J. Phys. Chem. Solids 66, 1978 (2005)

    Article  Google Scholar 

  44. K. Wang, B. Shin, K.B. Reuter, T. Todorov, D.B. Mitzi, S. Guha, Appl. Phys. Lett. 98, 051912 (2011)

    Article  Google Scholar 

  45. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011)

    Article  Google Scholar 

  46. A. Walsh, S. Chen, S.-H. Wei, X.-G. Gong, Adv. Energy Mater. 2, 400 (2012)

    Article  Google Scholar 

  47. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Thin Solid Films 517, 2519 (2009)

    Article  Google Scholar 

  48. X. Fontane, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett 98, 181905 (2011)

    Article  Google Scholar 

  49. A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A 29, 051203 (2011)

    Article  Google Scholar 

  50. M. Himmrich, H. Haeuseler, Spectrochim. Acta A Mol. Biomol. Spectrosc. 47, 933 (1991)

    Article  Google Scholar 

  51. M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontane, L.V. Volkova, E. Arushanov, A. Pérez-Rodríguez, Sci. Rep 6, 19414 (2016)

    Article  Google Scholar 

  52. M.I. Khalil, O. Atici, A. Lucotti, S. Binetti, A. Le Donne, L. Magagnin, Appl. Surf. Sci. 379, 91 (2016)

    Article  Google Scholar 

  53. Y. Xi, Z. Chen, Z. Zhang, X. Fang, G. Liang Nanoscale, Res. Lett. 9, 208 (2014)

    Google Scholar 

  54. B. Flynn, I. Braly, P.A. Glover, R.P. Oleksak, C. Durgan, G.S. Herman, Mater. Lett. 107, 214 (2013)

    Article  Google Scholar 

  55. G. Altamur, J. Vidal, Chem. Mater. 28, 3540 (2016)

    Article  Google Scholar 

  56. S.Y. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522 (2013)

    Article  Google Scholar 

  57. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B81, 245204 (2010)

    Article  Google Scholar 

  58. A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Phys. Rev. B 81, 113202 (2010)

    Article  Google Scholar 

  59. S. Das, S.K. Chaudhuri, R.N. Bhattacharya, K.C. Mandal, Appl. Phys. Lett. 104, 192106 (2014)

    Article  Google Scholar 

  60. S. Chen, L. Wang, A. Walsh, X.G. Gong, S.H. Wei, Appl. Phys. Lett. 101, 223901 (2012)

    Article  Google Scholar 

  61. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Energy Environ. Sci. 8, 3134 (2015)

    Article  Google Scholar 

  62. Y. Gang Zou, J. Liu, X. Zhang, Y. Jiang, J.S. Hu, L.-J. Wan, Sci. China Chem. 57, 1552 (2014)

    Article  Google Scholar 

  63. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. 53, 18 (2007)

    Google Scholar 

  64. S. Abermann, Sol. Energy 94, 37 (2013)

    Article  Google Scholar 

  65. S. Tombolato, CZTS(e) thin films grown by chemical methods for PV application, Ph.D. Thesis, University of Milano-Bicocca, Bicocca, Italy, 2015

    Google Scholar 

  66. P.R. Ghediya, T.K. Chaudhury, J. Mater. Sci. Mater. Electron. 26, 1908 (2015)

    Article  Google Scholar 

  67. P. Kush, S.K. Ujjain, N.C. Mehra, P. Jha, R.K. Sharma, S. Deka, ChemPhysChem 14, 2793 (2013)

    Article  Google Scholar 

  68. P.A. Fernandes, P.M.P. Salome, A.F. Cunha, J. Alloys Compd. 509, 7600 (2011)

    Article  Google Scholar 

  69. D. Dumcenco, Y.-S. Huang, Opt. Mater. 35, 419 (2013)

    Article  Google Scholar 

  70. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15, 627 (1966)

    Article  Google Scholar 

  71. P.R. Ghediya, T.K. Chaudhuri, AIP Conf. Proc. 1665, 120032 (2015)

    Article  Google Scholar 

  72. D. Tiwari, T.K. Chaudhuri, A. Ray, K.D. Tiwari, Thin Solid Films 551, 42 (2014)

    Article  Google Scholar 

  73. V. Kosyak, N.B. Mortazavi Amiri, A.V. Postnikov, M.A. Scarpulla, J. Appl. Phys. 114, 124501 (2013)

    Article  Google Scholar 

  74. X. Lin, J. Kavalakkatt, M.C. Lux-Steiner, A. Ennaoui, Adv. Sci. 2, 1500028 (2015)

    Article  Google Scholar 

  75. F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Adv. Energy Mater. 4, 1301381 (2014)

    Article  Google Scholar 

  76. T.P. Dhakal, C.-Y. Peng, R. Reid Tobias, R. Dasharathy, C.R. Westgate, Sol. Energy 100, 23 (2014)

    Article  Google Scholar 

  77. Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, M.A. Green, J. Mater. Chem. A 2, 500 (2014)

    Article  Google Scholar 

  78. W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, I. Malajovich, H. David Rosenfeld, K.R. Choudhury, J. Mater. Chem. C 2, 3777 (2014)

    Article  Google Scholar 

  79. H. Xin, J.K. Katahara, I.L. Braly, H.W. Hillhouse, Adv. Energy Mater. 4, 1301823 (2014)

    Article  Google Scholar 

  80. G. Larramona, S. Bourdais, A. Jacob, C. Choné, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Péré, G. Dennler, J. Phys. Chem. Lett. 5, 3763 (2014)

    Article  Google Scholar 

  81. C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, R. Agrawal, Prog. Photovolt. Res. Appl. 23, 654 (2015)

    Article  Google Scholar 

  82. G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, J. Poortmans, Appl. Phys. Lett. 103, 163904 (2013)

    Article  Google Scholar 

  83. B. Shin, Y. Zhu, N. Bojarczuk, S.J. Chey, S. Guha, Appl. Phys. Lett. 101, 053903 (2012)

    Article  Google Scholar 

  84. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012)

    Article  Google Scholar 

  85. W. Yang, H.-S. Duan, B. Bob, H. Zhou, B. Lei, C.-H. Chung, S.-H. Li, W.W. Hou, Y. Yang, Adv. Mater. 24, 6323 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the President and Provost of Charotar University of Science and Technology, Changa, Anand, Gujarat, India, for providing research facilities. Helpful discussion from Dr. Maykel Courel, National Autonomous University of Mexico (UNAM), Mexico, is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant R. Ghediya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ghediya, P.R., Chaudhuri, T.K. (2018). Microwave-Processed Copper Zinc Tin Sulphide (CZTS) Inks for Coatings in Solar Cells. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics