Skip to main content

Defects Engineering for Performing SrTiO3-Based Thermoelectric Thin Films: Principles and Selected Approaches

  • Chapter
  • First Online:
Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications

Abstract

Thermoelectric energy-conversion technology based on oxide materials offers promising advantages over “traditional” non-oxide and intermetallics systems due to higher stability of oxides at elevated temperatures and in various redox conditions, high natural abundance and favourable environmental issues. Oxides also possess a unique defect chemistry, which can be precisely controlled by external redox conditions and redox-sensitive substitutions. Donor-substituted strontium titanate SrTiO3 represents a family of promising n-type thermoelectric materials, with specific electronic structure tunable via introduction of structural defects, and prevailing lattice contribution to the thermal transport, enabling various lattice engineering approaches to suppress the thermal conductivity. Based on review of the recently published research results, this chapter aims to demonstrate how, through controlled defect chemistry engineering in SrTiO3-based materials, one can tune the thermoelectric performance, breaking the coupling between thermal and electrical properties. The approach is based on compositional design in model systems, where prevailing defect types are shifted from extended oxygen-rich planes to oxygen vacancies, accompanied by presence of the A-site cationic deficiency. The contributions from various defects in the crystal lattice into electronic and thermal transport are demonstrated and discussed. The concept represents particular interest for thermoelectric films and superlattices based on strontium titanate, where introduction of specific defect types with potential impact on thermoelectric performance can be achieved in easier and/or more controllable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)

    Article  Google Scholar 

  2. A. Date, A. Date, C. Dixon, A. Akbarzadeh, Progress of thermoelectric power generation systems: prospect for small to medium scale power generation. Renew. Sust. Energ. Rev. 33, 371–381 (2014)

    Article  Google Scholar 

  3. X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015)

    Google Scholar 

  4. C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, A solar cavity-receiver packed with an array of thermoelectric converter modules. Sol. Energy 85, 1511–1518 (2011)

    Article  Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  6. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  7. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  Google Scholar 

  8. G.A. Slack, New materials and performance limits for thermoelectric cooling, in Thermoelectrics Handbook, ed. by D. M. Rowe (Ed), (CRC Press, 1995). doi:10.1201/9781420049718.ch34

  9. C. Uher, Skutterudite-Based Thermoelectrics, in Thermoelectrics Handbook, (CRC Press, 2005), pp. 17–34

    Google Scholar 

  10. J. Leszczynski, K.T. Wojciechowski, A.L. Malecki, Studies on thermal decomposition and oxidation of CoSb3. J. Therm. Anal. Calorim. 105, 211–222 (2011)

    Article  Google Scholar 

  11. K. Gała̧zka, S. Populoh, L. Sagarna, L. Karvonen, W. Xie, A. Beni, P. Schmutz, J. Hulliger, A. Weidenkaff, Phase formation, stability, and oxidation in (Ti, Zr, Hf)NiSn half-Heusler compounds. Phys Status Solidi Appl Mater Sci 211, 1259–1266 (2014)

    Article  Google Scholar 

  12. T. Fujii, I. Terasaki, Block-Layer Concept for the Layered Co Oxide: A Design for Thermoelectric Oxides, in Chemistry, Physics, and Materials Science of Thermoelectric Materials, ed. by M. G. Kanatzidis, S. D. Mahanti, T. P. Hogan (Eds), (Springer, 2003), pp. 71–87

    Google Scholar 

  13. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997)

    Article  Google Scholar 

  14. K. Koumoto, I. Terasaki, R. Funahashi, Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206–210 (2006)

    Article  Google Scholar 

  15. M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation. Appl. Phys. A Mater. Sci. Process. 116, 433–470 (2014)

    Article  Google Scholar 

  16. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 80, 3760 (2002)

    Article  Google Scholar 

  17. M. Ohtaki, Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion. Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter 3, 2010

    Google Scholar 

  18. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)

    Article  Google Scholar 

  19. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077–8085 (2008)

    Article  Google Scholar 

  20. H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10, 44–49 (2007)

    Article  Google Scholar 

  21. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions. Phys. Chem. Chem. Phys. 16, 26946–26954 (2014)

    Article  Google Scholar 

  22. Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney, High-Figure-of-merit thermoelectric LA-doped A-site-deficient SrTiO3 ceramics. Chem. Mater. 28, 925–935 (2016)

    Article  Google Scholar 

  23. B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li, Y. Wu, High thermoelectric performance of Nb-doped SrTiO 3 bulk materials with different doping levels. J. Mater. Chem. C 3, 11406–11411 (2015)

    Article  Google Scholar 

  24. S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 18–21 (2005)

    Article  Google Scholar 

  25. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, K. Koumoto, Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 3449 (2013)

    Article  Google Scholar 

  26. Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer, I.A. Kinloch, Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7, 15898–15908 (2015)

    Article  Google Scholar 

  27. A.V. Kovalevsky, S. Populoh, S.G. Patrício, P. Thiel, M.C. Ferro, D.P. Fagg, J.R. Frade, A. Weidenkaff, Design of SrTiO3-based thermoelectrics by tungsten substitution. J. Phys. Chem. C 119, 4466–4478 (2015)

    Article  Google Scholar 

  28. P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics 179, 2047–2058 (2008)

    Article  Google Scholar 

  29. R. Moos, K.H. Hardtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 degrees and 1400 degrees C. J. Am. Ceram. Soc. 80, 2549–2562 (1997)

    Article  Google Scholar 

  30. C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, A. Majumdar, Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92, 23–25 (2008)

    Google Scholar 

  31. S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.-W.G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720–33723 (2014)

    Article  Google Scholar 

  32. Y. Wang, C. Wan, X. Zhang, L. Shen, K. Koumoto, A. Gupta, N. Bao, Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics. Appl. Phys. Lett. 102, 183905 (2013)

    Article  Google Scholar 

  33. Y. Wang, K.H. Lee, H. Ohta, K. Koumoto, Thermoelectric properties of electron doped SrO(SrTiO3) n (n=1,2) ceramics. J. Appl. Phys. 105, 103701 (2009)

    Article  Google Scholar 

  34. J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices. J. Mater. Res. 32, 1–21 (2016)

    Google Scholar 

  35. T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0<~x<~0.1). Phys. Rev. B 63, 113104 (2001)

    Article  Google Scholar 

  36. M. Yamamoto, H. Ohta, K. Koumoto, Thermoelectric phase diagram in a CaTiO3-SrTiO3-BaTiO3 system. Appl. Phys. Lett. 90, 8–10 (2007)

    Google Scholar 

  37. B. Jalan, S. Stemmer, Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl. Phys. Lett. 97, 42106 (2010)

    Article  Google Scholar 

  38. J.D. Baniecki, M. Ishii, H. Aso, K. Kobayashi, K. Kurihara, K. Yamanaka, A. Vailionis, R. Schafranek, Electronic transport behavior of off-stoichiometric La and Nb doped SrxTiyO3-δ epitaxial thin films and donor doped single-crystalline SrTiO3. Appl. Phys. Lett. 99, 232111 (2011)

    Article  Google Scholar 

  39. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 3–5 (2005)

    Google Scholar 

  40. S. Kumar, A. Barasheed, H.N. Alshareef, High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping. ACS Appl. Mater. Interfaces 5, 7268–7273 (2013)

    Article  Google Scholar 

  41. A.I. Abutaha, S.R. Sarath Kumar, A. Mehdizadeh Dehkordi, T.M. Tritt, H.N. Alshareef, Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films. J. Mater. Chem. C 2, 9712–9719 (2014)

    Article  Google Scholar 

  42. S. Kobayashi, Y. Mizumukai, T. Ohnishi, N. Shibata, Y. Ikuhara, T. Yamamoto, High electron mobility of Nb-doped SrTiO3 films stemming from rod-type Sr vacancy clusters. ACS Nano 9, 10769–10777 (2015)

    Article  Google Scholar 

  43. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    Article  Google Scholar 

  44. H. Ohta, S. Kim, Y. Mune, et al., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007)

    Article  Google Scholar 

  45. S.R.S. Kumar, M.N. Hedhili, D. Cha, T.M. Tritt, H.N. Alshareef, Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726–2732 (2014)

    Article  Google Scholar 

  46. A.I. Abutaha, S.R.S. Kumar, K. Li, A.M. Dehkordi, T.M. Tritt, H.N. Alshareef, Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 27, 2165–2171 (2015)

    Article  Google Scholar 

  47. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J. Phys. Chem. C 118, 4596–4606 (2014)

    Article  Google Scholar 

  48. A. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J. Mater. Chem. A (2017). doi:10.1039/C6TA09860F

  49. A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate. Chem. Mater. 27, 4995–5006 (2015)

    Article  Google Scholar 

  50. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 113, 53704 (2013)

    Article  Google Scholar 

  51. K. Gömann, G. Borchardt, M. Schulz, A. Gömann, W. Maus-Friedrichs, B. Lesage, O. Kaïtasov, S. Hoffmann-Eifert, T. Schneller, Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions. Phys. Chem. Chem. Phys. 7, 2053–2060 (2005)

    Article  Google Scholar 

  52. N.G. Eror, U. Balachandran, Self-compensation in lanthanum-doped strontium titanate. J. Solid State Chem. 40, 85–91 (1981)

    Article  Google Scholar 

  53. M.C. Verbraeken, T. Ramos, K. Agersted, Q. Ma, C.D. Savaniu, B.R. Sudireddy, J.T.S. Irvine, P. Holtappels, F. Tietz, Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv. 5, 1168–1180 (2015)

    Article  Google Scholar 

  54. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2, A′Ak-1BkO3k+1 and AmBm-1O3m. Prog. Solid State Chem. 36, 253–387 (2008)

    Article  Google Scholar 

  55. I. Levin, L.A. Bendersky, T.A. Vanderah, A structural study of the layered perovskite-derived Srn(Ti,Nb)nO3n+2 compounds by transmission electron microscopy. Philos Mag A 80, 411–445 (2000)

    Article  Google Scholar 

  56. J. Canales-Vázquez, M.J. Smith, J.T.S. Irvine, W. Zhou, Studies on the reorganization of extended defects with increasing n in the perovskite-based La4Srn-4TinO3n+2 series. Adv. Funct. Mater. 15, 1000–1008 (2005)

    Article  Google Scholar 

  57. L. Amaral, A.M.R. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics. Mater. Res. Bull. 44, 263–270 (2009)

    Article  Google Scholar 

  58. Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.J. Kim, H. Chi, C. Uher, X. Pan, P.F.P. Poudeu, Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013)

    Article  Google Scholar 

  59. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    Article  MATH  Google Scholar 

  60. E.S. Toberer, A. Zevalkink, G.J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843 (2011)

    Article  Google Scholar 

  61. S. McGuire, D.J. Keeble, R.E. Mason, P.G. Coleman, Y. Koutsonas, T.J. Jackson, Variable energy positron beam analysis of vacancy defects in laser ablated SrTiO3 thin films on SrTiO3. J. Appl. Phys. 100, 44109 (2006)

    Article  Google Scholar 

  62. D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the termal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992)

    Article  Google Scholar 

  63. Y. Su Kim, J. Kim, M. Jee Yoon, et al., Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film. Appl. Phys. Lett. 104, 13501 (2014)

    Article  Google Scholar 

  64. Y.S. Kim, J. Kim, S.J. Moon, W.S. Choi, Y.J. Chang, J.G. Yoon, J. Yu, J.S. Chung, T.W. Noh, Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. Appl. Phys. Lett. 94, 202906 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the FCT Investigator program (grant IF/00302/2012) and project CICECO-Aveiro Institute of Materials (ref. UID/CTM/50011/2013), financed by COMPETE 2020 Programme and National Funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. AK would like also to acknowledge the contributions of the following researchers to the previously published results, used as an experimental support for the discussion, namely, Dr. A. A. Yaremchenko, Dr. S. G. Patrício, Dr. J. Macías, Dr. N. M. Ferreira, Dr. S. M. Mikhalev, Dr. D. P. Fagg, Prof. J. R. Frade (University of Aveiro), Dr. S. Populoh, Dr. Ph. Thiel (Empa), Prof. A. Weidenkaff (University of Stuttgart), and Dr. M. H. Aguirre (University of Zaragoza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Kovalevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kovalevsky, A.V. (2018). Defects Engineering for Performing SrTiO3-Based Thermoelectric Thin Films: Principles and Selected Approaches. In: Zhang, J., Jung, YG. (eds) Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59906-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59906-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59905-2

  • Online ISBN: 978-3-319-59906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics