A Semantic Frame-Based Similarity Metric for Characterizing Technological Capabilities

  • Scott Appling
  • Erica Briscoe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10318)


In this work we are motivated by the problem of representing technological capabilities that are present in text. We propose to use frames to capture the semantics around technologies and describe a new method, called FrameSim, that serves as a means of determining the similarity between these capabilities. We intentionally focus on a corpus built from informal media (e.g., news articles), which provides greater variability and an increased amount of suppositions about technologies’ uses, deriving value from ‘passive crowdsourcing’. Our evaluation shows that this semantic frame-based similarity metric preserves technology topic coherence, and we discuss how this method shows promise for improving conceptual search in scientific and technical writing.


Frame semantics Information retrieval Semantic search 



This work was graciously funded by DTRA grant 1-15-1-0019.


  1. 1.
    Abraham, B.P., Moitra, S.D.: Innovation assessment through patent analysis. Technovation 21(4), 245–252 (2001)CrossRefGoogle Scholar
  2. 2.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley framenet project. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, ACL 1998, Association for Computational Linguistics, Stroudsburg, PA, USA, vol. 1, pp. 86–90 (1998).
  3. 3.
    Balla, M.I., Gandini, E., Nicolini, C.: Can bibliometric indicators assess science and technology? Cell Biochem. Biophys. 14(1), 99–116 (1989)Google Scholar
  4. 4.
    Bengisu, M., Nekhili, R.: Forecasting emerging technologies with the aid of science and technology databases. Technol. Forecast. Soc. Chang. 73(7), 835–844 (2006)CrossRefGoogle Scholar
  5. 5.
    Briscoe, E.J., Appling, S., Schlosser, J.: Passive crowd sourcing for technology prediction. In: Agarwal, N., Xu, K., Osgood, N. (eds.) SBP 2015. LNCS, vol. 9021, pp. 264–269. Springer, Cham (2015). doi: 10.1007/978-3-319-16268-3_28 Google Scholar
  6. 6.
    Charalabidis, Y., Loukis, E.N., Androutsopoulou, A., Karkaletsis, V., Triantafillou, A.: Passive crowdsourcing in government using social media. Transform. Gov. People Process Policy 8(2), 7–7 (2014)Google Scholar
  7. 7.
    Crumsey, J.M., Le Moine, J.M., Capowiez, Y., Goodsitt, M.M., Larson, S.C., Kling, G.W., Nadelhoffer, K.J.: Community-specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest. Ecology 94(12), 2827–2837 (2013)CrossRefGoogle Scholar
  8. 8.
    Fillmore, C.J., Baker, C.F.: Frame semantics for text understanding. In: Proceedings of WordNet and Other Lexical Resources Workshop, NAACL (2001)Google Scholar
  9. 9.
    Fillmore, C.J., Baker, C.F., Sato, H.: The framenet database and software tools. In: LREC (2002)Google Scholar
  10. 10.
    Gangemi, A., Alam, M., Asprino, L., Presutti, V., Recupero, D.R.: Framester: a wide coverage linguistic linked data hub. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 239–254. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_16 CrossRefGoogle Scholar
  11. 11.
    Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM (2002)Google Scholar
  12. 12.
    Kim, H., Ren, X., Sun, Y., Wang, C., Han, J.: Semantic frame-based document representation for comparable corpora. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 350–359. IEEE (2013)Google Scholar
  13. 13.
    Kostoff, R.N., Briggs, M.B., Solka, J.L., Rushenberg, R.L.: Literature-related discovery (LRD): methodology. Technol. Forecast. Soc. Chang. 75(2), 186–202 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003)CrossRefGoogle Scholar
  15. 15.
    Lichtenthaler, E.: Technological change and the technology intelligence process: a case study. J. Eng. Technol. Manag. 21(4), 331–348 (2004)CrossRefGoogle Scholar
  16. 16.
    Meng, L., Huang, R., Gu, J.: A review of semantic similarity measures in wordnet. Int. J. Hybrid Inf. Technol. 6(1), 1–12 (2013)Google Scholar
  17. 17.
    Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Montgomery, S.L.: Does Science Need a Global Language?: English and the Future of Research. University of Chicago Press, Chicago (2013)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  21. 21.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007 (1995)Google Scholar
  22. 22.
    Schultz, L., Joutz, F.: Methods for identifying emerging general purpose technologies: a case study of nanotechnologies. Scientometrics 85(1), 155–170 (2010)CrossRefGoogle Scholar
  23. 23.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  24. 24.
    Subirats, C., Petruck, M.: Surprise: Spanish framenet. In: Proceedings of CIL. vol. 17, p. 188 (2003)Google Scholar
  25. 25.
    Swanson, D., Smalheiser, N.: An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif. Intell. 91(2), 183–203 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Teufel, S., Moens, M.: Summarizing scientific articles: experiments with relevance and rhetorical status. Comput. Linguist. 28(4), 409–445 (2002)CrossRefGoogle Scholar
  27. 27.
    Walsh, S.T., Linton, J.D.: Infrastructure for emergent industries based on discontinuous innovations. Eng. Manag. J. 12(2), 23–32 (2000)CrossRefGoogle Scholar
  28. 28.
    Watts, R.J., Porter, A.L., Newman, N.C.: Innovation forecasting using bibliometrics. Compet. Intell. Rev. 9(4), 11–19 (1998)CrossRefGoogle Scholar
  29. 29.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, ACL 1994, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 133–138 (1994).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations