Abstract
We present an end-to-end system for open-domain non-factoid question-answering. To accomplish this we leverage the information on the ever-growing World Wide Web, and the capabilities of commercial search engines to find the relevant information. Our QA system is composed of three components: (i) query formulation module (QFM) (ii) candidate answer generation module (CAGM) and (iii) answer selection module (ASM). A thorough empirical evaluation using two datasets demonstrates that the proposed approach is highly competitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Agichtein, E., et al.: Finding high-quality content in social media. In: Proceedings of WSDM (2008)
Agichtein, E., et al.: Overview of the TREC 2015 LiveQA track. In: Proceedings of TREC (2015)
Bian, J., et al.: Finding the right facts in the crowd: factoid question answering over social media. In: Proceedings of WWW (2008)
Bobrow, D.G.: A question-answering system for high school algebra word problems. In: Proceedings of FJCC (1964)
Burges, C.: From ranknet to lambdarank to lambdamart: an overview. Learning 11, 23–581 (2010)
Chen, D., Manning, C.: A fast and accurate dependency parser using neural networks. In: Proceedings of EMNLP (2014)
Chen, Q., Li, M., Zhou, M.: Improving query spelling correction using web search results. In: Proceedings of EMNLP-CoNLL (2007)
Green, C.: Theorem proving by resolution as a basis for question-answering systems. In: Machine Intelligence (1969)
Higashinaka, R., Isozaki, H.: Corpus-based question answering for why-questions. In: Proceedings of IJCNLP (2008)
Mikolov, T., et al.: Efficient estimation of word representations in vector space. In: Proceedings of ICLR (2013)
Oh, J.H., et al.: Why question answering using sentiment analysis and word classes. In: Proceedings of EMNLP-CoNLL (2012)
Soricut, R., Brill, E.: Automatic question answering using the web: beyond the factoid. Inf. Retrieval 9, 191–206 (2006)
Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to rank answers to non-factoid questions from web collections. Comput. Linguist. 37, 351–383 (2011)
Suryanto, M.A., et al.: Quality-aware collaborative question answering: methods and evaluation. In: Proceedings of WSDM (2009)
Varanasi, S., Neumann, G.: Question/answer matching for Yahoo! Answers using a corpus-based extracted Ngram-based mapping. In: Proceedings of TREC (2015)
Waltz, D.L.: An English language question answering system for a large relational database. Commun. ACM 21, 526–539 (1978)
Wang, D., Nyberg, E.: CMU OAQA at TREC 2015 LiveQA: discovering the right answer with clues. In: Proceedings of TREC (2015)
Wang, D., Nyberg, E.: CMU OAQA at TREC 2016 LiveQA: an attentional neural encoder-decoder approach for answer ranking. In: Proceedings of TREC (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Khvalchik, M., Pithyaachariyakul, C., Kulkarni, A. (2017). Answering the Hard Questions. In: Gracia, J., Bond, F., McCrae, J., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds) Language, Data, and Knowledge. LDK 2017. Lecture Notes in Computer Science(), vol 10318. Springer, Cham. https://doi.org/10.1007/978-3-319-59888-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-59888-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59887-1
Online ISBN: 978-3-319-59888-8
eBook Packages: Computer ScienceComputer Science (R0)