Skip to main content

Answering the Hard Questions

  • Conference paper
  • First Online:
Language, Data, and Knowledge (LDK 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10318))

Included in the following conference series:

  • 1285 Accesses

Abstract

We present an end-to-end system for open-domain non-factoid question-answering. To accomplish this we leverage the information on the ever-growing World Wide Web, and the capabilities of commercial search engines to find the relevant information. Our QA system is composed of three components: (i) query formulation module (QFM) (ii) candidate answer generation module (CAGM) and (iii) answer selection module (ASM). A thorough empirical evaluation using two datasets demonstrates that the proposed approach is highly competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/trecliveqa2015/.

  2. 2.

    https://project-hobbit.eu/challenges/qald2017/.

  3. 3.

    https://pypi.python.org/pypi/html2text.

  4. 4.

    https://pypi.python.org/pypi/langdetect.

  5. 5.

    http://webscope.sandbox.yahoo.com.

  6. 6.

    https://nlp.stanford.edu/IR-book/.

  7. 7.

    https://sites.google.com/site/trecliveqa2015/trec-liveqa-2015--qrels.

  8. 8.

    http://www.cs.cmu.edu/~alavie/METEOR/.

  9. 9.

    https://radimrehurek.com/gensim/models/doc2vec.html.

  10. 10.

    https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html.

References

  1. Agichtein, E., et al.: Finding high-quality content in social media. In: Proceedings of WSDM (2008)

    Google Scholar 

  2. Agichtein, E., et al.: Overview of the TREC 2015 LiveQA track. In: Proceedings of TREC (2015)

    Google Scholar 

  3. Bian, J., et al.: Finding the right facts in the crowd: factoid question answering over social media. In: Proceedings of WWW (2008)

    Google Scholar 

  4. Bobrow, D.G.: A question-answering system for high school algebra word problems. In: Proceedings of FJCC (1964)

    Google Scholar 

  5. Burges, C.: From ranknet to lambdarank to lambdamart: an overview. Learning 11, 23–581 (2010)

    Google Scholar 

  6. Chen, D., Manning, C.: A fast and accurate dependency parser using neural networks. In: Proceedings of EMNLP (2014)

    Google Scholar 

  7. Chen, Q., Li, M., Zhou, M.: Improving query spelling correction using web search results. In: Proceedings of EMNLP-CoNLL (2007)

    Google Scholar 

  8. Green, C.: Theorem proving by resolution as a basis for question-answering systems. In: Machine Intelligence (1969)

    Google Scholar 

  9. Higashinaka, R., Isozaki, H.: Corpus-based question answering for why-questions. In: Proceedings of IJCNLP (2008)

    Google Scholar 

  10. Mikolov, T., et al.: Efficient estimation of word representations in vector space. In: Proceedings of ICLR (2013)

    Google Scholar 

  11. Oh, J.H., et al.: Why question answering using sentiment analysis and word classes. In: Proceedings of EMNLP-CoNLL (2012)

    Google Scholar 

  12. Soricut, R., Brill, E.: Automatic question answering using the web: beyond the factoid. Inf. Retrieval 9, 191–206 (2006)

    Article  Google Scholar 

  13. Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to rank answers to non-factoid questions from web collections. Comput. Linguist. 37, 351–383 (2011)

    Article  Google Scholar 

  14. Suryanto, M.A., et al.: Quality-aware collaborative question answering: methods and evaluation. In: Proceedings of WSDM (2009)

    Google Scholar 

  15. Varanasi, S., Neumann, G.: Question/answer matching for Yahoo! Answers using a corpus-based extracted Ngram-based mapping. In: Proceedings of TREC (2015)

    Google Scholar 

  16. Waltz, D.L.: An English language question answering system for a large relational database. Commun. ACM 21, 526–539 (1978)

    Article  MATH  Google Scholar 

  17. Wang, D., Nyberg, E.: CMU OAQA at TREC 2015 LiveQA: discovering the right answer with clues. In: Proceedings of TREC (2015)

    Google Scholar 

  18. Wang, D., Nyberg, E.: CMU OAQA at TREC 2016 LiveQA: an attentional neural encoder-decoder approach for answer ranking. In: Proceedings of TREC (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Khvalchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khvalchik, M., Pithyaachariyakul, C., Kulkarni, A. (2017). Answering the Hard Questions. In: Gracia, J., Bond, F., McCrae, J., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds) Language, Data, and Knowledge. LDK 2017. Lecture Notes in Computer Science(), vol 10318. Springer, Cham. https://doi.org/10.1007/978-3-319-59888-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59888-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59887-1

  • Online ISBN: 978-3-319-59888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics