Advertisement

Fast Lattice-Based Encryption: Stretching Spring

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10346)

Abstract

The SPRING pseudo-random function (PRF) has been described by Banerjee, Brenner, Leurent, Peikert and Rosen at FSE 2014. It is quite fast, only 4.5 times slower than the AES (without hardware acceleration) when used in counter mode. SPRING is similar to the PRF of Banerjee, Peikert and Rosen from EUROCRYPT 2012, whose security relies on the hardness of the Learning With Rounding (LWR) problem, which can itself be reduced to hard lattice problems. However, there is no such chain of reductions relating SPRING to lattice problems, because it uses small parameters for efficiency reasons.

Consequently, the heuristic security of SPRING is evaluated using known attacks and the complexity of the best known algorithms for breaking the underlying hard problem.

In this paper, we revisit the efficiency and security of SPRING when used as a pseudo-random generator. We propose a new variant which is competitive with the AES in counter mode without hardware AES acceleration, and about four times slower than AES with hardware acceleration. In terms of security, we improve some previous analysis of SPRING and we estimate the security of our variant against classical algorithms and attacks. Finally, we implement our variant using AVX2 instructions, resulting in high performances on high-end desktop computers.

Keywords

Pseudo-random generator Stream cipher Ring-LWR Rejection sampling 

Notes

Acknowledgment

The authors are supported by the french ANR BRUTUS project.

References

  1. [AKPW13]
    Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_4 CrossRefGoogle Scholar
  2. [BBL+15]
    Banerjee, A., Brenner, H., Leurent, G., Peikert, C., Rosen, A.: SPRING: fast pseudorandom functions from rounded ring products. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 38–57. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46706-0_3 Google Scholar
  3. [BFS04]
    Bardet, M., Faugere, J.-C., Salvy, B.: On the complexity of gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74 (2004)Google Scholar
  4. [BGL+14]
    Brenner, H., Gaspar, L., Leurent, G., Rosen, A., Standaert, F.-X.: FPGA implementations of SPRING. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 414–432. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44709-3_23 Google Scholar
  5. [BGM+15]
    Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. Cryptology ePrint Archive, Report 2015/769 (2015). http://eprint.iacr.org/2015/769
  6. [BPR12]
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_42 CrossRefGoogle Scholar
  7. [CLS06]
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006). doi: 10.1007/11761679_11 CrossRefGoogle Scholar
  8. [Fau99]
    Faugere, J.-C.: A new efficient algorithm for computing gröbner bases (f 4). J. Pure Appl. Algebra 139(1), 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Gal12]
    Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: 53rd FOCS, pp. 514–523. IEEE Computer Society Press, October 2012Google Scholar
  10. [LBF08]
    Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest. Submission to NIST (2008)Google Scholar
  11. [LMPR08]
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71039-4_4 CrossRefGoogle Scholar
  12. [LPR13]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM (JACM) 60(6), 43 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Lyu09]
    Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_35 CrossRefGoogle Scholar
  14. [MS95]
    Meier, W., Staffelbach, O.: The self-shrinking generator. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995). doi: 10.1007/BFb0053436 Google Scholar
  15. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de LilleLilleFrance
  2. 2.Univ. de Rennes-1, IRISARennesFrance
  3. 3.Ecole Normale SupérieureParisFrance

Personalised recommendations