# A Low-Resource Quantum Factoring Algorithm

Conference paper

First Online:

- 3 Citations
- 1.6k Downloads

## Abstract

In this paper, we present a factoring algorithm that, assuming standard heuristics, uses just \((\log N)^{2/3+o(1)}\) qubits to factor an integer *N* in time \(L^{q+o(1)}\) where \(L = \exp ((\log N)^{1/3}(\log \log N)^{2/3})\) and \(q=\root 3 \of {8/3}\approx 1.387\). For comparison, the lowest asymptotic time complexity for known pre-quantum factoring algorithms, assuming standard heuristics, is \(L^{p+o(1)}\) where \(p>1.9\). The new time complexity is asymptotically worse than Shor’s algorithm, but the qubit requirements are asymptotically better, so it may be possible to physically implement it sooner.

## References

- 1.Artjuhov, M.M.: Certain criteria for primality of numbers connected with the little Fermat theorem. Acta Arith.
**12**, 355–364 (1966)MathSciNetGoogle Scholar - 2.Barbulescu, R.: Algorithms of discrete logarithm in finite fields. Thesis, Université de Lorraine, December 2013. https://tel.archives-ouvertes.fr/tel-00925228
- 3.Beauregard, S.: Circuit for Shor’s algorithm using \(2n+3\) qubits. Quantum Inf. Comput.
**3**(2), 175–185 (2003)MathSciNetzbMATHGoogle Scholar - 4.Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A
**54**, 1034–1063 (1996)MathSciNetCrossRefGoogle Scholar - 5.Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
**18**(4), 766–776 (1989)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Bernstein, D.J.: Detecting perfect powers in essentially linear time. Math. Comput.
**67**(223), 1253–1283 (1998)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Bernstein, D.J.: Circuits for integer factorization: a proposal (2001). https://cr.yp.to/papers.html#nfscircuit
- 8.Bernstein, D.J.: Factoring into coprimes in essentially linear time. J. Algorithms
**54**(1), 1–30 (2005)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Bernstein, D.J., Lenstra Jr., H.W., Pila, J.: Detecting perfect powers by factoring into coprimes. Math. Comput.
**76**(257), 385–388 (2007)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Buhler, J.P., Lenstra Jr., H.W., Pomerance, C.: Factoring integers with the number field sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The development of the number field sieve. LNM, vol. 1554, pp. 50–94. Springer, Heidelberg (1993). doi: 10.1007/BFb0091539 CrossRefGoogle Scholar
- 11.Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454. The Royal Society (1998)Google Scholar
- 12.Coppersmith, D.: Modifications to the number field sieve. J. Cryptol.
**6**(3), 169–180 (1993)MathSciNetCrossRefzbMATHGoogle Scholar - 13.Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Soc.
**22**(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Gordon, D.: Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discret. Math.
**6**, 124–138 (1993)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput.
**14**(15–16), 1338–1372 (2014). https://arxiv.org/pdf/1310.2984 MathSciNetGoogle Scholar - 16.Grosshans, F., Lawson, T., Morain, F., Smith, B.: Factoring safe semiprimes with a single quantum query (2015). http://arxiv.org/abs/1511.04385
- 17.Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_18 CrossRefGoogle Scholar
- 18.Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. In: STOC 1990: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 564–572. ACM, New York (1990)Google Scholar
- 19.Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. (2)
**126**(3), 649–673 (1987)MathSciNetCrossRefzbMATHGoogle Scholar - 20.Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography. In: Proceedings of Mycrypt 2016 (2016, to appear). https://eprint.iacr.org/2016/1102
- 21.Pollard, J.M.: Factoring with cubic integers. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The development of the number field sieve. LNM, vol. 1554, pp. 4–10. Springer, Heidelberg (1993). doi: 10.1007/BFb0091536 CrossRefGoogle Scholar
- 22.Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
**21**(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Phys. Sci. Eng.
**345**, 409–423 (1993)MathSciNetCrossRefzbMATHGoogle Scholar - 24.Seifert, J.-P.: Using fewer qubits in Shor’s factorization algorithm via simultaneous diophantine approximation. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 319–327. Springer, Heidelberg (2001). doi: 10.1007/3-540-45353-9_24 CrossRefGoogle Scholar
- 25.Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput.
**26**(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar - 26.Takahashi, Y., Kunihiro, N.: A quantum circuit for Shor’s factoring algorithm using \(2n+2\) qubits. Quantum Inf. Comput.
**6**(2), 184–192 (2006)MathSciNetzbMATHGoogle Scholar - 27.Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A
**54**, 147–153 (1996)MathSciNetCrossRefGoogle Scholar

## Copyright information

© Springer International Publishing AG 2017