An Updated Security Analysis of PFLASH

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10346)


One application in post-quantum cryptography that appears especially difficult is security for low-power or no-power devices. One of the early champions in this arena was SFLASH, which was recommended by NESSIE for implementation in smart cards due to its extreme speed, low power requirements, and the ease of resistance to side-channel attacks. This heroship swiftly ended with the attack on SFLASH by Dubois et al. in 2007. Shortly thereafter, an old suggestion re-emerged: fixing the values of some of the input variables. The resulting scheme known as PFLASH is nearly as fast as the original SFLASH and retains many of its desirable properties but without the differential weakness, at least for some parameters.

PFLASH can naturally be considered a form of high degree HFE\(^-\) scheme, and as such, is subject to any attack exploiting the low rank of the central map in HFE\(^-\). Recently, a new attack has been presented that affects HFE\(^-\) for many practical parameters. This development invites the investigation of the security of PFLASH against these techniques.

In this vein, we expand and update the security analysis of PFLASH by proving that the entropy of the key space is not greatly reduced by choosing parameters that are provably secure against differential adversaries. We further compute the complexity of the new HFE\(^-\) attack on instances of PFLASH and conclude that PFLASH is secure against this avenue of attack as well. Thus PFLASH remains a secure and attractive option for implementation in low power environments.


Multivariate cryptography HFE PFLASH Discrete differential MinRank 


  1. 1.
    Cryptographic Technology Group: Submission requirements and evaluation criteria for the post-quantum cryptography standardization process. NIST CSRC (2016).
  2. 2.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comp. 26, 1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). doi: 10.1007/3-540-45961-8_39 CrossRefGoogle Scholar
  4. 4.
    Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). doi: 10.1007/3-540-44750-4_20 CrossRefGoogle Scholar
  5. 5.
    Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi: 10.1007/3-540-68339-9_4 CrossRefGoogle Scholar
  6. 6.
    Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001). doi: 10.1007/3-540-45353-9_22 CrossRefGoogle Scholar
  7. 7.
    Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74143-5_1 CrossRefGoogle Scholar
  8. 8.
    Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH be repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70583-3_56 CrossRefGoogle Scholar
  9. 9.
    Smith-Tone, D.: On the differential security of multivariate public key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 130–142. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25405-5_9 CrossRefGoogle Scholar
  10. 10.
    Chen, M.S., Yang, B.Y., Smith-Tone, D.: PFLASH - secure asymmetric signatures on smart cards. In: Lightweight Cryptography Workshop (2015).
  11. 11.
    Moody, D., Perlner, R.A., Smith-Tone, D.: An asymptotically optimal structural attack on the ABC multivariate encryption scheme. In: [25] pp. 180–196 (2014)Google Scholar
  12. 12.
    Moody, D., Perlner, R.A., Smith-Tone, D.: Key recovery attack on the cubic ABC simple matrix multivariate encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 241–254. Springer, Cham (2017)Google Scholar
  13. 13.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_2 CrossRefGoogle Scholar
  14. 14.
    Bettale, L., Faugère, J., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Des. Codes Crypt. 69, 1–52 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Patarin, J., Goubin, L., Courtois, N.: \(C_{-+}^{*}\) and HM: variations around two schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998). doi: 10.1007/3-540-49649-1_4 CrossRefGoogle Scholar
  16. 16.
    Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998). doi: 10.1007/BFb0054126 CrossRefGoogle Scholar
  17. 17.
    Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High order linearization equation (HOLE) attack on multivariate public key cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71677-8_16 CrossRefGoogle Scholar
  19. 19.
    Daniels, T., Smith-Tone, D.: Differential properties of the HFE cryptosystem. In: [25], pp. 59–75 (2014)Google Scholar
  20. 20.
    Cartor, R., Gipson, R., Smith-Tone, D., Vates, J.: On the differential security of the HFEv- signature primitive. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 162–181. Springer, Cham (2016). doi: 10.1007/978-3-319-29360-8_11 CrossRefGoogle Scholar
  21. 21.
    Smith-Tone, D.: Properties of the discrete differential with cryptographic applications. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 1–12. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12929-2_1 CrossRefGoogle Scholar
  22. 22.
    Vates, J., Smith-Tone, D.: Key recovery attack for all parameters of HFE-. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 272–288. Springer, Cham (2017)Google Scholar
  23. 23.
    Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_27 CrossRefGoogle Scholar
  24. 24.
    Ding, J., Kleinjung, T.: Degree of regularity for HFE-. IACR Cryptology ePrint Archive 2011, p. 570 (2011)Google Scholar
  25. 25.
    Mosca, M. (ed.): PQCrypto 2014. LNCS, vol. 8772. Springer, Cham (2014)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG (outside the US) 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of LouisvilleLouisvilleUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations