Advertisement

Automated Analysis of Directional Optical Coherence Tomography Images

  • Florence Rossant
  • Kate Grieve
  • Michel Paques
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10317)

Abstract

Directional optical coherence tomography (D-OCT) reveals reflectance properties of retinal structures by changing the incidence angle of the light beam. As no commercially available OCT device has been designed for such use, image processing is required to homogenize the grey levels between off-axis images before differential analysis. We describe here a method for automated analysis of D-OCT images and propose a color representation to highlight angle-dependent structures. Clinical results show that the proposed approach is robust and helpful for clinical interpretation.

Keywords

Optical coherence tomography Directional OCT (D-OCT) Retina Ophthalmology Differential analysis Markov random fields 

References

  1. 1.
    Stiles, W.S., Crawford, B.S.: The luminous efficiency of rays entering the eye pupil at different points. Proc. R. Soc. Lond. 112, 428–450 (1933)CrossRefGoogle Scholar
  2. 2.
    Westheimer, G.: Directional sensitivity of the retina: 75 years of Stiles-Crawford effect. Proc. Biol. Sci. 275, 2777–2786 (2008)CrossRefGoogle Scholar
  3. 3.
    Gao, W., Cense, B., Zhang, Y., et al.: Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt. Express 16, 6486–6501 (2008)CrossRefGoogle Scholar
  4. 4.
    Miloudi, C., Rossant, F., Bloch, I., et al.: The negative cone mosaic: a new manifestation of the optical stiles-crawford effect in normal eyes. Invest. Ophthalmol. Vis. Sci. 56, 7043–7050 (2015)CrossRefGoogle Scholar
  5. 5.
    Lujan, B.J., Roorda, A., Croskrey, J.A., et al.: Directional optical coherence tomography provides accurate outer nuclear layer and Henle fiber layer measurements. Retina 35, 1511–1520 (2015)CrossRefGoogle Scholar
  6. 6.
    Makhijani, V.S., Roorda, A., Bayabo, J.-K., et al.: Chromatic visualization of reflectivity variance within hybridized directional OCT images. In: Proceedings of SPIE 8571, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII, 857105, 20 March, 2013. doi: 10.1117/12.2007141
  7. 7.
    Ghorbel, I., Rossant, F., Bloch, I., Tick, S., Pâques, M.: Automated segmentation of macular layers in OCT images and quantitative evaluation of performances. Pattern Recogn. 44(8), 1590–1603 (2011)CrossRefGoogle Scholar
  8. 8.
    Rossant, F., Bloch, I., Ghorbel, I., Pâques, M.: Parallel double snakes. Application to the segmentation of retinal layers in 2D-OCT for pathological subjects. Pattern Recogn. 48(12), 3857–3870 (2015)CrossRefGoogle Scholar
  9. 9.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restauration of images. IEEE Trans. PAMI 6(6), 721–741 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut Supérieur d’Electronique de Paris (ISEP)ParisFrance
  2. 2.Clinical Investigation Center 1423, Quinze-Vingts HospitalParisFrance

Personalised recommendations