Skip to main content

Bananas and Plantains (Musa spp.)

Abstract

Bananas and plantains are one of the most important crops in the world, yet very few hybrids are cultivated. Bananas face considerable pressure from multiple biotic and abiotic stresses, but its genetic improvement is impeded by constraints on seed set due to multiple physiological and reproductive issues. The triploid nature of almost all commercially important bananas requires a complicated breeding scheme involving cross hybridization across ploidy levels and results in poor seed set that reduces the probability of obtaining favorable recombination. The poor seed set is further complicated by issues of parthenocarpy and partial to complete female and male sterility that are not fully understood. While the introduction of genomic resources of this perennial long cycling crop promises to hasten the development of improved cultivars, there is a need to maintain vigorous and committed long-term international breeding programs.

Keywords

  • Banana
  • Plantain
  • Musa spp.
  • Cavendish
  • Gros Michel
  • Suckering ability
  • Sigatoka
  • Bacterial wilt
  • Heterozygous
  • Banana bunch
  • Association mapping

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59819-2_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59819-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

References

  • Adeleke MT, Pillay M, Okoli BE (2004) The relationships between meiotic irregularities and fertility in diploid and triploid Musa L. Cytologia 69:387–393

    CrossRef  Google Scholar 

  • Aguilar Morán JF (2013) Improvement of Cavendish banana cultivars through conventional breeding. Acta Hortic 986:205–208

    CrossRef  Google Scholar 

  • van Asten PJA, Fermont AM, Taulya G (2011) Drought is a major yield loss factor for rainfed East African highland banana. Agric Water Manag 98:541–552

    CrossRef  Google Scholar 

  • Bakry F (2008) Zygotic embryo rescue in bananas. Fruits 63:111–115

    CrossRef  Google Scholar 

  • Bakry F, Carreel F, Jenny C, Horry JP (2009) Genetic improvement of banana. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 3–50

    CrossRef  Google Scholar 

  • Bhat KV, Jarret RL, Rana RS (1995) DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers. Electrophoresis 16:1736–1745

    CAS  CrossRef  PubMed  Google Scholar 

  • Carreel F, De Leon DG, Lagoda P et al (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692

    CAS  CrossRef  PubMed  Google Scholar 

  • Christelová P, De Langhe E, Hřibová E et al (2017) Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers Conserv 26:801–824

    Google Scholar 

  • Creste S, Neto AT, Vencovsky R et al (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Resour Crop Evol 51:723–733

    CAS  CrossRef  Google Scholar 

  • Crossa J, de los Campos G, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Crouch JH, Crouch HK, Tenkouano A et al (1999) VNTR-based diversity analysis of 2x and 4x full-sib Musa hybrids. Electron J Biotechnol 2:130–139

    CrossRef  Google Scholar 

  • Crouch HK, Crouch JH, Madsen S et al (2000) Comparative analysis of phenotypic and genotypic diversity among plantain landraces (Musa spp., AAB group). Theor Appl Genet 101:1056–1065

    CAS  CrossRef  Google Scholar 

  • D’Hont A, Paget-Goy A, Escoute J et al (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183

    CrossRef  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    CrossRef  PubMed  Google Scholar 

  • Davey MW, Gudimella R, Harikrishna JA et al (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14:683

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • De Langhe E (1986) Towards an international strategy for genetic improvement in the genus Musa. In: Persley GJ, De Langhe EA (eds) Banana and plantain breeding strategies. Proceedings of an International Workshop, Cairns, Australia. 1–17 October, 1986. INIBAP, Montpellier, p 19–23

    Google Scholar 

  • De Langhe E, Vrydaghs L, De Maret P et al (2009) Why bananas matter: an introduction to the history of banana domestication. Ethnobot Res Appl 7:165–177

    CrossRef  Google Scholar 

  • De Langhe E, Hribova E, Carpentier S et al (2010) Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot 106:849–857

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Deckers J, Tessera M, Alemu K, Abate T, Swennen R (2001) Ensete. In: Raemaekers RH (ed) Crop production in tropical Africa. DGIC, Brussels, pp 587–591

    Google Scholar 

  • Dodds KS (1943) The genetic system of banana varieties in relation to banana breeding. Emp J Exp Agric 11:89–98

    Google Scholar 

  • Dodds KS (1945) Genetical and cytological studies of Musa. VII. Certain aspects of polyploidy. J Genet 46:161–179

    CrossRef  Google Scholar 

  • Dumpe BB, Ortiz R (1996) Apparent male fertility in Musa germplasm. HortSci 31:1019–1022

    Google Scholar 

  • Emediato FL, Nunes FA, Teixeira CC, Passos MA, Bertioli DJ, Pappas GJ, Miller RN (2009) Characterization of resistance gene analogs in Musa acuminata cultivars contrasting in resistance to biotic stresses. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 443–445

    Google Scholar 

  • FAO (2014) Banana market review and banana statistics 2012–2013, Rep. I3627E/1/01.14. FAO, Rome. http://www.fao.org/docrep/019/i3627e/i3627e.pdf

    Google Scholar 

  • Fauré S, Noyer JL, Horry JP et al (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    CrossRef  PubMed  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358

    PubMed  PubMed Central  Google Scholar 

  • Fortescue JA, Turner DW (2004) Pollen fertility in Musa: viability in cultivars grown in southern Australia. Aust J Agric Res 55:1085–1091

    CrossRef  Google Scholar 

  • Fortescue JA, Turner DW (2011) Reproductive biology. In: Pillay M, Tenkouano A (eds) Banana breeding: constraints and progress. CRC Press, Boca Raton, pp 305–331

    Google Scholar 

  • Fortescue JA, Turner DW, Romero R (2011) Romero evidence that banana (Musa spp.), a tropical monocotyledon, has a facultative long-day response to photoperiod. Funct Plant Biol 38:867–878

    CrossRef  Google Scholar 

  • Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53:876–883

    CAS  CrossRef  PubMed  Google Scholar 

  • Hippolyte I, Bakry F, Seguin M et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hippolyte I, Jenny C, Gardes L et al (2012) Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109:937–951

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iskra-Caruana M, Chabannes M, Duroy PO et al (2014) A possible scenario for the evolution of banana streak virus in banana. Virus Res 186:155–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Janssens SB, Vandelook F, De Langhe E et al (2016) Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol 210:1453–1465

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jarret RL, Vuylsteke DR, Gawel NJ et al (1993) Detecting genetic diversity in diploid bananas using PCR and primers from a highly repetitive DNA sequence. Euphytica 68:69–76

    CAS  CrossRef  Google Scholar 

  • Jones DR (ed) (1999) Diseases of banana, abaca’ and enset. CABI, Wallingford

    Google Scholar 

  • Kaemmer D, Fischer D, Jarret RL et al (1997) Molecular breeding in the genus Musa: a strong case for STMS marker technology. Euphytica 96:49–63

    CAS  CrossRef  Google Scholar 

  • Karamura DA (1998) Numerical taxonomic studies of the East African highland (Musa AAA East Africa) in Uganda. Dissertation, University of Reading

    Google Scholar 

  • Karamura DA, Karamura EB, Tinzaara W (2012) In: Karamura DA, Karamura EB, Tinzaara W (eds) The current classification and naming of the East African highland bananas (Musa AAA) based on Morphological Characteristics in book: Banana cultivar Names, Synonyms and their Usage. Bioversity International, East Africa, pp 6–23

    Google Scholar 

  • Karamura D, Kitavi M, Nyine M et al (2016) Genotyping the local banana landrace groups of East Africa. Acta Hortic 1114:67–74

    CrossRef  Google Scholar 

  • Kitavi M, Downing T, Lorenzen J et al (2016) The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor Appl Genet 129:547–561

    CAS  CrossRef  PubMed  Google Scholar 

  • Krishnamoorthy V, Kumar N (2005) Preliminary evaluation of diploid banana hybrids for yield potential, male fertility and reaction to Radopholus similis. Plant Gen Res Newsl 141:39–43

    Google Scholar 

  • Kumar LP, Selvarajan R, Iskra-Caruana M, Chabannes M, Hanna R (2015) Biology, etiology, and control of virus diseases of banana and plantain. In: Loebenstein G, Katis NI (eds) Advances in virus research, vol 91. Academic, Burlington, pp 229–269

    Google Scholar 

  • Lheureux F, Carreel F, Jenny C et al (2003) Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor Appl Genet 106:594–598

    CAS  CrossRef  PubMed  Google Scholar 

  • Li C, Shao J, Wang Y et al (2013) Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. Cubense. BMC Genomics 14:851

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lorenz AJ, Chao S, Franco G et al (2011) Chap. 2: Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    CrossRef  Google Scholar 

  • Martin G, Baurens FC, Droc G et al (2016) Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17:1–12

    CrossRef  Google Scholar 

  • Mbanjo EGN, Tchoumbougnang F, Mouelle AS et al (2012) Development of expressed sequence tags-simple sequence repeats (EST-SSRs) for Musa and their applicability in authentication of a Musa breeding population. Afric J Biotechnol 11:13546–13559

    CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RNG, Bertioli DJ, Baurens FC et al (2008) Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8:15

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Noumbissié GB, Chabannes M, Bakry F et al (2016) Chromosome segregation in an allotetraploid banana hybrid (AAAB) suggests a translocation between the A and B genomes and results in eBSV-free offsprings. Mol Breed 36:1–14

    CrossRef  Google Scholar 

  • Noyer JL, Causse S, Tomekpe K et al (2005) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetica 124:61–69

    CAS  CrossRef  PubMed  Google Scholar 

  • Nyine M, Pillay M (2011) The effect of banana breeding on the diversity of East African Highland banana (Musa, AAA). Acta Hortic 897:225–229

    CrossRef  Google Scholar 

  • Nyine M, Uwimana B, Swennen R, Batte M, Brown A, Hřibová E, Doležel J (2016) Genomic breeding approaches for East African Bananas. In: Abstracts of the plant and animal genome conference XXIV January 08–13, San Diego, CA

    Google Scholar 

  • Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B 11:332–341

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ortiz R (2000) Understanding the Musa genome: an update. Acta Hortic 54:157–168

    CrossRef  Google Scholar 

  • Ortiz R (2013) Conventional banana and plantain breeding. Acta Hortic 986:77–194

    Google Scholar 

  • Ortiz R (2015) Plant breeding in the omics era. Springer, New York

    CrossRef  Google Scholar 

  • Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32:158–169

    CAS  CrossRef  PubMed  Google Scholar 

  • Ortiz R, Ferris RSB, Vuylsteke DR (1995) Banana and plantain breeding. In: Gowen S (ed) Bananas and plantains. Springer, New York, pp 110–146

    CrossRef  Google Scholar 

  • Oselebe HO, Tenkuoano A, Pillay M et al (2006) Ploidy and genome segregation in Musa breeding populations assessed by flow cytometry and randomly amplified polymorphic DNA markers. J Am Soc Hortic 131:780–786

    CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    CAS  CrossRef  Google Scholar 

  • Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry J-P, Jenny C, Lebot V, Risterucci A-M, Tomekpe K, Doutrelepont H, Ball T, Manwaring J, de Maret P, Denham T (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS 108:11311–11318

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pillay M, Ogundiwin E, Nwakanma DC et al (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102:965–970

    CAS  CrossRef  Google Scholar 

  • Pillay M, Ude G, Kole C (eds) (2012) Genetics, genomics and breeding of bananas. CRC, Boca Raton

    Google Scholar 

  • Raboin LM, Carreel F, Noyer JL et al (2005) Diploid ancestors of triploid export banana cultivars: molecular identification of 2n restitution gamete donors and n gamete donors. Mol Breed 16:333–341

    CAS  CrossRef  Google Scholar 

  • Risterucci AM, Hippolyte I, Perrier X et al (2009) Development and assessment of diversity arrays technology for high-throughput DNA analyses in Musa. Theor Appl Genet 119:1093–1103

    CAS  CrossRef  PubMed  Google Scholar 

  • Roux NS (2001) Mutation induction in Musa. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science, Enfield

    Google Scholar 

  • Rowe P, Rosale F (1993) Diploid breeding at FHIA and the development of Goldfinger (FHIA-01). InfoMusa 2:9–11

    Google Scholar 

  • Sardos J, Rouard M, Hueber Y et al (2016) A genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PLoS One 11:5

    CrossRef  Google Scholar 

  • Sathiamoorthy S, Rao VNM (1980) Pollen production in relation to genome and ploidy in banana clones. Proc Nat Semi Banana Prod. Tech., TNAU, Coimbatore, pp 65–66

    Google Scholar 

  • Shepherd K (1999) Cytogenetics of the genus Musa. International Network for the Improvement of Banana and Plantain, Montpellier

    Google Scholar 

  • Silva PRO, de Jesus ON, Bragança CAD et al (2016) Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4. Genet Mol Res 15:5017765

    Google Scholar 

  • Simmonds NW (1962) The evolution of the bananas. Longmans, London

    Google Scholar 

  • Simmonds NW (1966) Bananas, 2nd edn. Longmans, London

    Google Scholar 

  • Simmonds NW (1987) Classification and breeding of bananas. In: Persley G, De Langhe E (eds) Banana and plantain breeding strategies. Proceedings of an International Workshop held at Cairns Australia, 13–17 October 1986. Austrailian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Lond Bot 55:302–312

    CrossRef  Google Scholar 

  • Ssebuliba R, Vuylsteke D, Hartman J et al (2000) Towards improving highland bananas. Uganda J Agric Sci 5:36–38

    Google Scholar 

  • Ssesuliba RN, Tenkouano A, Pillay M (2008) Male fertility and occurrence of 2n gametes in East African highland bananas (Musa spp.) Euphytica 164:153–162

    Google Scholar 

  • Stover RH, Buddenhagen IW (1986) Banana breeding: polyploidy, disease resistance and productivity. Fruits 41:175–191

    Google Scholar 

  • Stover RH, Simmonds NW (1987) Bananas, Tropical agricultural series, 3rd edn. Longmans, London

    Google Scholar 

  • Swennen R, Vuylsteke D (1993) Breeding black Sigatoka resistant plantain with a wild banana. Trop Agric 70:74–77

    Google Scholar 

  • Tenkouano A, Swennen R (2004) Progress in breeding and delivering improved plantain and banana to African farmers. Chron Hortic 44:9–15

    Google Scholar 

  • Tenkouano A, Crouch JH, Crouch HK et al (1999) Comparison of DNA marker and pedigree-based methods of genetic analysis of plantain and banana (Musa spp.) clones. I. Estimation of genetic relationships. Theor Appl Genet 98:62–68

    CAS  CrossRef  Google Scholar 

  • Tenkouano A, Vuylsteke D, Okoro J et al (2003) Registration of TMB2x5105-1 and TMB2x9128-3 diploid banana hybrids with good combining ability, partial resistance to black Sigatoka and resistance to nematodes. Hortscience 38:468–472

    Google Scholar 

  • Tenkouano A, Pillay M, Ortiz R (2011) Breeding techniques. In: Pillay M, Tenkouano A (eds) Banana breeding: constraints and progress. CRC Press, Boca Raton, pp 181–202

    CrossRef  Google Scholar 

  • Tenkouano A, Ortiz R, Vuylsteke D (2012) Estimating genetic effects in maternal and paternal half-sibs from tetraploid-diploid crosses in Musa spp. Euphytica 185:295–301

    CrossRef  Google Scholar 

  • Tripathi JN, Muwonge A, Tripathi L (2012) Efficient regeneration and transformation of plantain cv. ‘Gonja manjaya’ (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cell Dev Biol 48:216–224

    CrossRef  Google Scholar 

  • Tsegaye A, Struik PC (2002) Analysis of enset (Ensete ventricosum) indigenous production methods and farm-based biodiversity in major enset-growing regions of southern Ethiopia. Explor Agric 38:291–315

    Google Scholar 

  • Tushemereirwe W, Batte M, Nyine M, Tumuhimbise R, Barekye A, Tendo S, Talengera D, Kubiriba J, Lorenzen J, Swennen R, Uwimana B (2015) Performance of NARITA banana hybrids in the preliminary yield trial for three cycles in Uganda. Banana Technical Report, 35p. www.musalit.org/seeMore.php?id=15482

  • Ude G, Pillay M, Nwakanma D et al (2002) Genetic diversity in Musa acuminata Colla and Musa balbisiana Colla and some of their natural hybrids using AFLP markers. Theor Appl Genet 104:1246–1252

    CAS  CrossRef  PubMed  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E et al (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255

    CAS  CrossRef  PubMed  Google Scholar 

  • Uma S, Lakshmi S, Saraswathi MS et al (2011) Embryo rescue and plant regeneration in banana (Musa spp.) plant cell. Tissue Organ Cult 105:105–111

    CAS  CrossRef  Google Scholar 

  • Umber M, Pichaut JP, Farinas B et al (2016) Marker-assisted breeding of Musa balbisiana genitors devoid of infectious endogenous banana streak virus sequences. Mol Breed 36:1–11

    CAS  CrossRef  Google Scholar 

  • Vakili NG (1968) Responses of Musa acuminata species and edible cultivars to infection by Mycosphaerella musicola. Trop Agric 45:13–22

    Google Scholar 

  • Valdez-Ojeda R, James-Kay A, Ku-Cauich JR et al (2014) Genetic relationships among a collection of Musa germplasm by fluorescent-labeled SRAP. Tree Genet Genomic 10:465–476

    CrossRef  Google Scholar 

  • Van den Houwe I, De Smet K, Tezenas de Montcel H et al (1995) Variability in storage potential of banana shoot cultures under medium term storage conditions. Plant Cell Tissue Organ Cult 42:269–274

    CrossRef  Google Scholar 

  • Vuylsteke D, Swennen R, Ortiz R (1993) Development and performance of Black Sigatoka-resistant tetraploid hybrids of plantain (Musa spp., AAB group). Euphytica 65:33–42

    CrossRef  Google Scholar 

  • Wairegi LWI, van Asten PJA, Tenywa MM et al (2010) Abiotic constraints override biotic constraints in East African highland banana systems. Field Crop Res 117:146–153

    CrossRef  Google Scholar 

  • Wang XL, Chiang TY, Roux N et al (2007) Genetic diversity of wild banana (Musa balbisiana Colla) in China as revealed by AFLP markers. Genet Resour Crop Evol 54:11251132

    Google Scholar 

  • Wang W, Hu Y, Sun D et al (2012) Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.) Mol Biol Rep 39:451–459

    CrossRef  PubMed  Google Scholar 

  • Wei JY, Liu DB, Wei SX et al (2011) Analysis of genetic diversity in banana cultivars (Musa spp.) using sequence-related amplified polymorphism markers. Acta Hortic 897:263–265

    CrossRef  Google Scholar 

Download references

Acknowledgments

This research was undertaken with the support of the Belgium Government, IITA, the Bill and Melinda Gates Foundation, the CGIAR Research Program on Roots, Tubers and Banana (RTB), USAID and HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Brown .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Brown, A. et al. (2017). Bananas and Plantains (Musa spp.). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_7

Download citation