Skip to main content

Sweetpotato (Ipomoea batatas L.)

Abstract

Sweet potato has traditionally been viewed as a “poor person’s crop” or “orphan crop,” and it has attracted limited attention compared to other staple crops. However, during the last decade, this perception has changed, and it is widely acknowledged that sweet potato has great potential to contribute to the alleviation of malnutrition and hunger in the developing world. Orange-fleshed sweet potato, in particular, with its high provitamin A content, has become a prominent example of the effectiveness of biofortified staple crops to combat vitamin A deficiency. Similarly, increasing awareness of the nutritional value of sweet potato is driving consumer demand among health-conscious consumers globally, and its potential use in a wide range of value-added human and animal products is widely recognized. As the public and private sectors learn more about the benefits and opportunities of sweet potato, they have invested more in crop improvement; thus our understanding of the importance and potential of the crop is increasing.

This chapter covers many aspects of sweet potato improvement with emphasis on the developing world. It includes sections on the history of sweet potato cultivation, general crop biology, the complex genetics and breeding challenges encountered by breeders seeking to improve the crop, crossing and breeding strategies for key traits, germplasm relations and the potential of wild relatives for crop improvement, and a section on seed production and the development of sustainable seed systems. It concludes with a review of advances in molecular genetics and genomics of the crop and the potential uses of these tools for sweet potato improvement.

Keywords

  • Sweet potato
  • Ipomoea batatas
  • Roots
  • Vines
  • Heterozygosity
  • Clonal propagation
  • Accelerated breeding scheme
  • Starch
  • Sweet potato virus disease
  • Near-infrared reflectance spectrometry
  • Beta-carotene
  • Genotyping by sequencing (GBS)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59819-2_6
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59819-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2

References

  • Adikini S, Mukasa SB, Mwanga ROM, Gibson RW (2016) Effects of sweet potato feathery mottle virus and sweet potato chlorotic stunt virus on the yield of sweet potato in Uganda. J Phytopathol 164:242–254

    CrossRef  Google Scholar 

  • Adu-Kwarteng E, Sakyi-Dawson EO, Ayernor GS, Truong VD, Shih FF, Daigle K (2014) Variability of sugars in staple-type sweet potato (Ipomoea batatas) cultivars: the effects of harvest time and storage. Int J Food Prop 17:410–420. doi:10.1080/10942912.2011.642439

    CrossRef  Google Scholar 

  • Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. John Hopkins University Press, Baltimore

    Google Scholar 

  • Andrade MI, Alvaro A, Menomussanga J, Makunde GS, Ricardo J, Wolfgang J, Grüneberg WJ, Eyzaguirre R, Low J, Ortiz R (2016) ‘Alisha’, ‘Anamaria’, ‘Bie’, ‘Bita’, ‘Caelan’, ‘Ivone’, ‘Lawrence’, ‘Margarete’, and ‘Victoria’ Sweetpotato. Hortscience 51:597–600

    Google Scholar 

  • Austin DF (1977) Hybrid polyploids in Ipomoea section batatas. J Hered 68:259–260

    CrossRef  Google Scholar 

  • Austin DF (1978) The Ipomoea batatas complex – I. Taxon. Bull Torrey Bot Club 105:114–129

    CrossRef  Google Scholar 

  • Austin DF (1979) An infrageneric classification for Ipomoea (Convolvulaceae). Taxon 28:359–361

    CrossRef  Google Scholar 

  • Austin DF (1983) Variability in sweetpotato in America. Proc Am Soc Hortic Sci Trop Reg 7(Part B):15–26

    Google Scholar 

  • Austin DF (1988a) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Gregory P (ed) Exploration, maintenance and utilization of sweet potato genetic resources. International Potato Center, Lima, pp 27–59

    Google Scholar 

  • Austin DF (1988b) Nomenclature changes in the Ipomoea batatas complex (Convolvulaceae). Taxon 37:184–185

    CrossRef  Google Scholar 

  • Austin DF (1991) Ipomoea littoralis (Convolvulaceae) – taxonomy, distribution and ethnobotany. Econ Bot 45:251–256

    CrossRef  Google Scholar 

  • Austin DF, Bianchini RS (1998) Additions and corrections in American Ipomoea (Convolvulaceae). Taxon 47:833–838

    CrossRef  Google Scholar 

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38

    CrossRef  Google Scholar 

  • Austin DF, de la Puente F, Contreras J (1991) Ipomoea tabascana, an endangered tropical species. Econ Bot 45:435

    CrossRef  Google Scholar 

  • Austin DF, Jarret RL, Tapia C, de la Puente F (1993) Collecting tetraploid I. batatas (Linnaeus) Lamarck in Ecuador. FAO/IBPGR Plant Genet Res Newsl 91(92):33–35

    Google Scholar 

  • Bacusmo JL, Collins WW, Jones A (1988) Effects of fertilization on stability and yield components of sweetpotato clones. J Am Soc Hortic Sci 113:261–264

    Google Scholar 

  • Bohac JR, Jones A, Austin DF (1992) Unreduced pollen: proposed mechanism of polyploidization of sweet potato (Ipomoea batatas). Hortic Sci 27:611

    Google Scholar 

  • Bohac JR, Austin DF, Jones A (1993) Discovery of wild tetraploid sweetpotatoes. Econ Bot 47:193–201

    CrossRef  Google Scholar 

  • Bohac JR, Dukes PD, Austin DF (1995) Sweet potato. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, pp 57–62

    Google Scholar 

  • Bouis H, Islam Y (2012) Delivering nutrients widely through biofortification: building on orange sweet potato – scaling up in agriculture, rural development and nutrition, Focus 19, Brief 11. International Food Policy Research Institute (IFPRI), Washington, DC. http://dspace.africaportal.org/jspui/bitstream/123456789/33024/1/focus19_11.pdf. Accessed 22 Nov 2016

    Google Scholar 

  • Bovel-Benjamin AC (2007) Sweet potato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52:1–59

    CrossRef  CAS  Google Scholar 

  • Bulmer R (1966) Birds as possible agents in the propagation of the sweet potato. Emu 65:165–182

    CrossRef  Google Scholar 

  • Buteler MI, Jarret RL, Labonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123–132

    CAS  CrossRef  Google Scholar 

  • Buteler M, Labonte D, Jarret R, Macchiavelli, R (2002) Microsatellite-based paternity analysis in polyploid sweetpotato. J Am Soc Hort Sci 127:392–396

    Google Scholar 

  • Cervantes-Flores J (2006) Development of a genetic linkage map and QTL analysis in sweetpotato. PhD. thesis. North Carolina State University, Raleigh. p 181

    Google Scholar 

  • Cervantes-Flores JC, Yencho GC, Kriegner A, Pecota KV, Faulk MA, Mwanga ROM, Sosinski S (2008) Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers. Mol Breed 21:511–532

    CAS  CrossRef  Google Scholar 

  • Cervantes-Flores J, Sosinski B, Pecota K, Mwanga ROM, Catignani G, Truong V, Watkins R, Ulmer M, Yencho G (2010) Identification of quantitative trait loci for dry matter, starch and β-carotene content in sweetpotato. Mol Breed 5:1–16

    Google Scholar 

  • Chang K, Lo H, Lai Y, Yao P, Lin K, Hwang S (2009) Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas). Bot Stud 50:43–55

    CAS  Google Scholar 

  • CIP/AVRDC/IBPGR, International Potato Center, Asian Vegetable Research and Development Center, and the International Board for Plant Genetic Resources (1991) In: Huaman Z (ed) Descriptors for sweetpotato. International Board for Plant Genetic Resources, Rome, pp 43–84

    Google Scholar 

  • Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT (2012) Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis 96:168–185

    CAS  CrossRef  Google Scholar 

  • Clark CA, Ferrin DM, Smith TP, Holmes GJ (eds) (2013) Compendium of sweetpotato diseases, pests, and disorders, 2nd edn. APS Press, The American Phytopathological Society, St. Paul, p 160

    Google Scholar 

  • Clark CA, Ferrin DM, Smith TP, Holmes GJ (2015) Diseases of sweetpotato (Ipomoea batatas [L.] Lam.) http://www.apsnet.org/publications/commonnames/Pages/Sweetpotato.aspx. Accessed 11/12/2016

  • Collins WW (1977) Diallel anlaysis of sweet potatooes for resistance to fusarium wilt. J Am Soc Hortic Sci 102:109–111

    Google Scholar 

  • Collins WW, Wilson LG, Arrendell, Dickey LF (1987) Genotype x environment interactions in sweetpotato yield and quality factors. J Am Soc Hortic Sci 112:579–583

    Google Scholar 

  • CSPI 2014 reference is CSPI (Center for Science in the Public Interest) (2014) Top 10 foods. http://www.cspinet.org/nah/10foods_bad.html

  • Dangler JM (1994) Sweetpotato foundation programs provide growers with high-quality pathogen-free seedstock. HortTechnology 4(3):224–227

    Google Scholar 

  • Diaz J, Schmiediche P, Austin DF (1996) Polygon of crossability between eleven species of Ipomoea: section Batatas. Euphytica 88:189–200

    CrossRef  Google Scholar 

  • Edmond JB, Ammerman GR (1971) Sweetpotoes: production, processing, and marketing. AVI Publishing Co, Westport

    Google Scholar 

  • Eguchi Y (1996) Flowering and seed production in the sweetpotato. In: Ramanatha Rao V (ed) Proceedings of the workshop on the formation of a network for the conservation of sweet potato biodiversity in Asia, Bogor, Indonesia, May 1–5, 1996. International Plant Genetic Resources Institute (IPGRI), Rome, pp 86–92

    Google Scholar 

  • Elameen A, Fjellheim S, Larsen A, Rognli OA, Sundheim L, Msolla S, Masumba E, Mtunda K, Klemsdal SS (2008) Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP. Genet Resour Crop Evol 55:97–408

    Google Scholar 

  • FAOSTAT (2011) FAOSTAT data. Available online: http://faostat.fao.org/

  • Fox PN, Cross J, Romagosa I (1997) Multi-environment testing and genotype X environment interaction. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London, pp 112–129

    Google Scholar 

  • Freyre R, Iwanga M, Orjeda G (1991) Use of Ipomoea trifida (H.B.K.) G. Don. germplasm for sweetpotato improvement. 2. Fertility of synthetic hexaploids and triploids with 2n gametes of I. trifida, and their interspecific crossability with sweet potato. Genome 34:209–214

    CrossRef  Google Scholar 

  • Fugise K, Yunoue T, Chishiki T (1955) Studies on the habits of flowering and seed setting in the varieties of sweetpotato (in Japanese with English summary). Bull Kyusu Agric Exp Sta 3:109–142

    Google Scholar 

  • Fuglie KO, Zhang L, Salazar LF, Walker TS (1999) Economic impact of virus-free sweetpotato planting material in Shandong province, China. International Potato Center, Lima

    Google Scholar 

  • Gaba V, Singer S (2009) Germplasm conservation and conservation by tissue culture. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer Science + Business Media BV, Houten, pp 65–80

    CrossRef  Google Scholar 

  • Gallais A (1981) Quantitative genetics and breeding methods. Proceedings of the fourth meeting of the Section Biometrics in Plant Breeding, Poitiers, France, 2–4 September 1981

    Google Scholar 

  • Gallais A (2003) Quantitative genetics and selection theory in autopolyploid plants. INRA, Paris

    Google Scholar 

  • Gama MICS, Leite RP, Cordeiro AR, Cantliffe DJ (1996) Transgenic sweetpotato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult 46:237–244

    CAS  CrossRef  Google Scholar 

  • Gamborg O, Milla R, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    CAS  PubMed  CrossRef  Google Scholar 

  • George EF (1996) Plant propagation by tissue culture in practice, part 2, 2nd edn. Exegetics Limited, Edington

    Google Scholar 

  • Gibson RW, Kreuze JF (2015) Degeneration in sweetpotato due to viruses, virus-cleaned planting material and reversion: a review. Plant Pathol 64:1–15

    CrossRef  Google Scholar 

  • Gibson RW, Mpembe I, Mwanga ROM (2011a) Benefits of participatory plant breeding (PPB) as exemplified by the first-ever officially released PPB-bred sweet potato cultivar. J Agric Sci 149:625–632

    CrossRef  Google Scholar 

  • Gibson R, Namanda S, Sindi K (2011b) Sweetpotato seed systems in East Africa. J Sustain Agric 35:870–844

    CrossRef  Google Scholar 

  • Gichuki ST, Berenyi M, Zhang D, Hermann M, Schmidt J, Glössl J, Burgh K (2003) Genetic diversity in sweetpotato (Ipomoea batatas (L.) Lam.) in relationship to geographic sources as assessed with RAPD markers. Genet Resour Crop Evol 50:429–437

    CAS  CrossRef  Google Scholar 

  • Gichuki S, La Bonte D, Burg K, Kapinga R, Simon JC (2005). Assessment and Genetic Diversity, Farmer Participatory Breeding and Sustainable Conservation of Eastern Africa Sweet Potato. Germ-Plasm. Annual report April 2004 - March 2005

    Google Scholar 

  • Golson J (1976) Archaeology and agricultural history in the New Guinea Highlands. In: Sieveking G, Longworth IH, Wilson KE (eds) Problems in economic and social archaeology. Duckworth, London, pp 201–220

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grüneberg WJ, Mwanga R, Andrade M, Espinoza J (2009) Selection methods part 5: breeding clonally propagated crops. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 275–322

    Google Scholar 

  • Grüneberg WJ, Eyzaguirre R, Espinoza J, Mwanga ROM, Andrade M, Dapaah H, Tumwegamire S, Agili S, Ndingo-Chipungu FP, Attaluri S, Kapinga R, Tinh N, Xie K, Tjintokohadi K, Carey T, Low J (2010) Procedures for the evaluation and analysis of sweetpotato trials. http://www.sweetpotatoknowledge.org/files/procedures-for-the-evaluation-and-analysis-of-sweetpotato/. Accessed 27 Jan 2017

  • Grüneberg WJ, Ma D, Mwanga ROM, Carey EE, Huamani K, Diaz F, Eyzaguirre R, Guaf E, Jusuf M, Karuniawan A, Tjintokohadi K, Song YS, Anil SR, Hossain M, Rahaman E, Attaluri SI, Somé K, Afuape SO, Adofo K, Lukonge E, Karanja L, Ndirigwe J, Ssemakula G, Agili S, Randrianaivoarivony JM, Chiona M, Chipungu F, Laurie SM, Ricardo J, Andrade M, Rausch Fernandes F, Mello AS, Khan MA, Labonte DR, Yencho GC (2015) Advances in sweetpotato breeding from 1993 to 2012. In: Low J, Nyongesa M, Quinn S, Parker M (eds) Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security. CABI, Wallingford, pp 3–68

    CrossRef  Google Scholar 

  • Guo XD, Zhou MD, Wang Y (2001) In vitro conservation of sweetpotato germplasm. In: Rao VR, Herman M (eds) Conservation and utilization of sweetpotato diversity in Asia. International Plant Genetic Resources Institute, Selangor Darul Ehsan, pp 16–24

    Google Scholar 

  • Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sakamoto S, Kohara M, Kishida Y, Fujishiro T, Kato M, Nanri K, Komaki A, Yoshinaga M, Takahata Y, Tanaka M, Tabata S, Isobe SN (2015) Survey of genome sequences in a wild sweet potato, Ipomoea trifida (HBK) G Don DNA Res 22:171–179

    Google Scholar 

  • Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezi G, Nandutu Masawi A, Baingana R, Carriquiry A, de Brauw A, Meenakshi JV, Gilligan DO (2012) Introduction of β-carotene-rich orange sweet potato in rural Uganda resulted in increased vitamin a intakes among children and women and improved vitamin A status among children. J Nutr 142:1871–1880

    CAS  PubMed  CrossRef  Google Scholar 

  • Hsia W, Chen C (1956) Studies on inducing the hard blooming varieties of sweetpotato to bloom. J Agric Assoc China. New Series 14:22–24

    Google Scholar 

  • Hu J, Nakatani M, Garcia Lalusin A, Kuranouchi T, Fujimura T (2003) Genetic analysis of sweetpotato and wild relatives using inter-simple sequence repeats (ISSRs). Breed Sci 53:297–304

    CAS  CrossRef  Google Scholar 

  • Hu YJ, Deng LQ, Chen JW, Zhou SY, Liu S, Fu YF, Yang CX, Liao ZH, Chen M (2016) An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars. Food Chem 194:46–54

    Google Scholar 

  • Huáman Z, Zhang D (1997) Sweetpotato. In: Fuccillo DA, Sears L, Stapleton P (eds) Biodiversity in trust: conservation and use of plant genetic resources in CGIAR Centres. Cambridge University Press, Cambridge, UK, pp 29–38

    CrossRef  Google Scholar 

  • Islam S (2016) Some bioactive constituents, antioxidant, and antimutagenic activities in the leaves of Ipomoea batatas Lam. genotypes. Am J Food Sci Technol 4:70–80. doi:10.12691/ajfst-4-3-3

    Google Scholar 

  • Iwanaga M (1988) Use of wild germplasm for sweetpotato breeding. In: Gregory P (ed) Exploration, maintenance, and utilization of sweetpotato genetic resources. International Potato Center, Lima, pp 199–210

    Google Scholar 

  • Iwanaga M, Freyre R, Orjeda G (1991) Use of Ipomoea trifida (H.B.K.) G. Don. germplasm for sweetpotato improvement. 1. Development of synthetic hexaploids of I. trifida by ploidy-level manipulations. Genome 34:201–208

    CrossRef  Google Scholar 

  • Jarret RL, Austin DF (1994) Genetic diversity and systematic relationships in sweetpotato (Ipomoea batatas (L.) Lam.) and related species as revealed by RAPD analysis. Genet Resour Crop Evol 41:165–173

    CrossRef  Google Scholar 

  • Jarret RL, Gawel N, Whittemore A (1992) Phylogenetic relationships of the sweetpotato Ipomoea batatas (L.) Lam. J Am Soc Hortic Sci 117:633–637

    Google Scholar 

  • Jia R (2013) Weather, shocks, sweet potatoes and peasant revolts in historical China. Econ J 124:92–118

    CrossRef  Google Scholar 

  • Johnson M, Pace RD (2010) Sweet potato leaves: properties and synergistic interactions that promote health and prevent disease. Nutr Rev 68:604–615

    PubMed  CrossRef  Google Scholar 

  • Jones A (1965a) A proposed breeding procedure for sweetpotato. Crop Sci 5:191–192

    CrossRef  Google Scholar 

  • Jones A (1965b) Cytological observations and fertility measurements of sweetpotato (Ipomoea batatas (L.) Lam.) Proc Am Soc Hortic Sci 86:527–537

    Google Scholar 

  • Jones A (1966) Morphological variability in early generations of a randomly intermating population of sweet potatoes (Ipomoea batatas (L.) Lam.) Univ Ga Agric Sta Technol Bull NS 56:1–31

    Google Scholar 

  • Jones A (1967a) Should Nishiyama’s K123 (Ipomoea trifida ) be designated I. batatas? Econ Bot 21:163–166

    CrossRef  Google Scholar 

  • Jones A (1967b) Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweetpotato (Ipomoea batatas). Technical Bulletin No. 1368. USDA

    Google Scholar 

  • Jones A (1967c) Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweetpotato (Ipomoea batatas). Technical Bulletin No. 1368. USDA

    Google Scholar 

  • Jones A (1969) Quantitative inheritance of ten vine traits in sweetpotatoes. J Am Soc Hortic Sci 94:408–411

    Google Scholar 

  • Jones A (1974) Chromosome numbers in genus Ipomoea. J Hered 55:216–219

    CrossRef  Google Scholar 

  • Jones A (1977) Heritability estimates of seven root traits in sweetpotatoes. J Am Soc Hortic Sci 102:440–442

    Google Scholar 

  • Jones A (1980) Sweet potato. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, pp 645–655

    Google Scholar 

  • Jones A (1986) Sweetpotato heritability estimates and their use in breeding. Hortic Sci 21:14–17

    Google Scholar 

  • Jones A, Dukes PD, Cuthbert FP Jr (1977) Pesticides increase true seed production of sweet potato. HortScience 12:154–167

    Google Scholar 

  • Jones A, Schalk JM, Dukes PD (1987) Control of soil insect injury by resistance in sweet potato. J Am Soc Hortic Sci 112:195–197

    Google Scholar 

  • Jones A (1990) Unreduced pollen in a wild tetraploid relative of sweet potato. J Am Soc Hortic Sci 115:512–516

    Google Scholar 

  • Jones A, Deonier MT (1965) Interspecific crosses among Ipomoea lacunosa, I. ramoni, I. trichocarpa and I. triloba. Bot Gaz 126:226–232

    CrossRef  Google Scholar 

  • Jones A, Dukes PD (1980) Heritability of sweetpotato resistances to root knot caused by Meloidogyne incognita and M. javanica. J Am Soc Hortic Sci 105:154–156

    Google Scholar 

  • Jones A, Steinbaur CE, Pope DT (1969) Quantitative inheritance of ten root traits in sweetpotatoes. J Am Soc Hortic Sci 94:271–175

    Google Scholar 

  • Jones A, Dukes PD, Schalk JM (1978) Heritability estimates for resistance in sweetpotato soil insects. J Am Soc Hortic Sci 104:424–426

    Google Scholar 

  • Jones A, Dukes PD, Schalk JM (1979) Heritability estimates for resistance in sweetpotato soil insects. J Am Soc Hortic Sci 104:424–426

    Google Scholar 

  • Jones A, Dukes PD, Schalk JM (1986) Sweetpotato breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI Pub. Co, Westport, pp 1–35

    Google Scholar 

  • Katayama K, Tamiya S, Sakai T, Kai Y, Ohara-Takada A, Kuranouchi T, Yoshinaga M (2015) Inheritance of low pasting temperature in sweetpotato starch and the dosage effect of wild-type alleles. Breed Sci 65:352–356. doi:10.1270/jsbbs.65.352

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kays SJ, Wang Y, McLaurin WJ (2005) Chemical and geographical assessment of the cultivated sweetpotato clones of the world. J Am Soc Hortic Sci 130:591–597

    Google Scholar 

  • Kempthorne O (1957) An introduction to genetic statistics. Wiley, New York

    Google Scholar 

  • Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JR, Rossel G, Eserman LA, Jarret RL, Yencho GC, Bernau V, Juarez H, Sotelo S, de Haan S, Struik PC (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci. doi:10.3389/fpls.2015.00251

  • Kimura T, Otani M, Noda T, Ideta O, Shimada T, Saito A (1999) Decrease of amylase content in transgenic sweetpotato. Breed Res 1:142

    Google Scholar 

  • King JR, Bamford R (1937) The chromosome number in Ipomoea and related genera. J Hered 28:279–282

    CrossRef  Google Scholar 

  • Kobayashi M (1984) The Ipomoea trifida complex closely related to sweet potato. In: Shideler SF, Rincon H (eds) Proceedings of the 6th symposium of the International Society of Tropical Root Crops. CIP, Lima, pp 561–568

    Google Scholar 

  • Kobayashi RS, Miyazaki T (1976) Sweet potato breeding using wild related species. Proc 4th Symp Int Soc Trop Root Crop 1:53–57

    Google Scholar 

  • Kobayashi RS, Bouwkamp JC, Sinden SL (1994) Interspecific hybrids from cross incompatible relatives of sweetpotato. Euphytica 80:159–164

    CrossRef  Google Scholar 

  • Komaki K (2004) Breeding value of wild species closely related to sweetpotato. Proceedings of international workshop on production, utilization and development of sweetpotato, Korea, pp 164–172

    Google Scholar 

  • Kreuze JF, Valkonen JPT, Ghislain M (2009) Genetic engineering. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer, Berlin

    Google Scholar 

  • Kriegner A, Cervantes JC, Burg K, Mwanga ROM, Zhang DP (2001) A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. In: Partners in research for the 21st century. Int. Potato Center Progr. Rpt. 1999–2000. p 303–314

    Google Scholar 

  • Kriegner A, Cerventes JC, Burg K, Mwanga ROM, Zhang D (2003) A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed 11:169–185

    CAS  CrossRef  Google Scholar 

  • Kumagai T, Umemura Y, Baha T, Iwanaga M (1990) The inheritance of ß-amylase null in storage roots of sweetpotato, Ipomoea batatas (L.) Lam. Theor Appl Genet 79:369–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Laurie SM, Faber M, Calitz FJ, Moelich EI, Mullerd N, Labuschagne MT (2012) The use of sensory attributes, sugar content, instrumental data and consumer acceptability in selection of sweet potato varieties. J Sci Food Agric. (wileyonlinelibrary.com). doi:10.1002/jsfa.5932

  • Lebot V (2010) Sweet potato. In: Bradshaw JE (ed) Root and tuber crops, handbook of plant breeding, vol 7. Springer Science+Business Media, LLC, New York, pp 97–125

    CrossRef  Google Scholar 

  • Lee JS, Ahn YS, Chung MN, Kim HS, Jeong BC, Bang JK (2007) Varieties for sweetpotato tips production as a vegetable. Kor J Breed Sci 39:224–231

    Google Scholar 

  • Leksrisompong P, Whitson ME, Truong VD, Drake MA (2012) Sensory attributes and consumer acceptance of sweet potato cultivars with varying flesh colors. J Sens Stud 27:59–69

    CrossRef  Google Scholar 

  • Li AX, Liu QC, Wang QM, Zhai H, Yan WZ, Zhang HY, Li M (2010) Mapping QTLs for starch content in sweetpotato. Mol Plant Breed 8:516–520. (in Chinese)

    Google Scholar 

  • Lim S, Kim JH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239

    CAS  CrossRef  Google Scholar 

  • Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D (2007) A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 137:1320–1327

    CAS  PubMed  Google Scholar 

  • Low JW, Lynam J, Lemaga B, Crissman C, Barker I, Thiele G, Namanda S, Wheatley C, Andrade M (2009) Sweetpotato in Sub-Saharan Africa. In: Loebenstein G, Thottappilly G (eds) The Sweetpotato. Springer Science+Business Media B.V, Dordrecht, pp 359–390

    CrossRef  Google Scholar 

  • Magoon ML, Krishnan R, Baii KV (1970) Cytological evidence on the origin of sweetpotato. Theor Appl Genet 40:360–366

    CAS  PubMed  CrossRef  Google Scholar 

  • Martin JA Jr (1946) Germination of sweet potato seed as affected by different methods of scarification. Proc Am Soc Hortic Sci 47:387–390

    Google Scholar 

  • Martin FW (1965) Incompatibility in the sweet potato. A review. Econ Bot 19:406–415

    CrossRef  Google Scholar 

  • Martin FW (1968) The system of self-incompatibility in Ipomoea. J Hered 59:263–267

    CrossRef  Google Scholar 

  • Martin FW (1970) Self and interspecific incompatibility in the Convolvulaceae. Bot Gaz 131:139–144

    CrossRef  Google Scholar 

  • Martin FW, Cabanillas E (1966) Post-pollen-germination barriers to seed set in sweet potato. Euphytica 15:404–411

    CrossRef  Google Scholar 

  • Martin FW (1988) Genetic and physiological basis for breeding and improving the sweet potato. In: Institut Scientifique de Recherche Agronomique (INRA) (ed) Proceeding 7th symposium of the international society for tropical root crops, Gosier, Guadeloupe, July 1–6, 1985. INRA, Paris, pp 749–761

    Google Scholar 

  • Martin FW, Jones A (1973) The species of Ipomoea closely related to the sweetpotato. Econ Bot 26:201–215

    CrossRef  Google Scholar 

  • Martin FM, Jones A (1986) Breeding sweet potatoes. Plant Breed Rev 4:313–345

    Google Scholar 

  • Martin FW, Ortiz S (1967) Anatomy of the stigma and style of sweet potato. New Phytol 66:109–113

    CrossRef  Google Scholar 

  • McDonald JA, Austin DF (1990) Changes and additions in Ipomoea section Batatas (Convolvulaceae). Brittonia 42:116–120

    CrossRef  Google Scholar 

  • McDonald JA, Mabry TJ (1992) Phylogenetic systematics of New World Ipomoea (Convolvulaceae) based on chloroplast DNA restriction site variation. Plant Syst Evol 180:243–259

    CAS  CrossRef  Google Scholar 

  • McEwan M, Namanda S, Lusheshanija D (2012) Whose standards matter? Piloting quality declared planting material inspection guidelines for sweetpotato in Lake Zone, Tanzania. 16th triennial symposium of the international society for tropical root crops. Abeokuta, Nigeria

    Google Scholar 

  • McEwan M, Almekinders C, Abidin PE, Andrade M, Carey EE, Gibson RW, Naico A, Namanda S, Schulz S (2015) Can small still be beautiful? Moving local sweetpotato seed systems to scale in sub-Saharan Africa. In: Low J, Nyongesa M, Quinn S, Parker M (eds) Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security. CABI, Wallingford, pp 289–310

    CrossRef  Google Scholar 

  • McGregor CE, Labonte DR (2006) Differential expression of genes between storage roots of sweetpotato cultivars jewel and white jewel. J Am Soc Hortic Sci 131:798–805

    CAS  Google Scholar 

  • Millar JC (1939) Further studies and technique used in sweetpotato breeding in Louisiana. J Hered 30:485–492

    CrossRef  Google Scholar 

  • Mont J, Iwanaga M, Orjeda G, Watanabe K (1993) Abortion and determination of stages for embryo rescue in crosses between sweetpotato, Ipomoea batatas Lam. (2n=6x=90) and its wild relative, I. trifida (H.B.K.) G. Don. (2n=2x=30). Sex Plant Reprod 6:176–182

    CrossRef  Google Scholar 

  • Montelaro J, Miller JC (1951) A study of some factors affecting seewd setting in the sweet potato. Proc Am Soc Hortic Sci 57:329–334

    Google Scholar 

  • Montenegro Á, Avis C, Weaver A (2008) Modeling the prehistoric arrival of the sweet potato in Polynesia. J Archaeol Sci 35:355–367

    CrossRef  Google Scholar 

  • Monden Y, Yamamoto A, Shindo A, Tahara M (2014) Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform. DNA Res 21:491–498

    Google Scholar 

  • Morrison T, Pressey R, Kays SJ (1993) Changes in alpha- and beta-amylase during storage of sweet potato lines with varying starch hydrolysis potential. J Am Soc Hortic Sci 118:236–242

    CAS  Google Scholar 

  • Moyer JW, Collins WW (1983) “Scarlet” sweet potato. Hortscience 18:111–112

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant 15:473–479

    CAS  CrossRef  Google Scholar 

  • Murata T, Matsuda Y (2003) Histological studies on the relationship between the process from fertilization to embryogenesis and the low seed set of sweet potato, Ipomoea batatas (L.) Lam. Breed Sci 53:41–50

    CrossRef  Google Scholar 

  • Mwanga ROM, Yencho GC, Moyer JW (2002a) Diallel analysis of sweetpotatoes for resistance to sweetpotato virus disease. Euphytica 128:237–248

    CAS  CrossRef  Google Scholar 

  • Mwanga ROM, Moyer J, Zhang D, Carey EE, Yencho GC (2002b) Nature of resistance to sweetpotato virus diseases. Acta Hortic 583:113–119

    CAS  CrossRef  Google Scholar 

  • Mwanga ROM, Ssemakula G (2011) Orange-fleshed sweet potatoes for food, health and wealth in Uganda. Intern J Agric Sust 9:42–49

    Google Scholar 

  • Mwanga ROM, Kyalo G, Ssemakula GN, Niringiye C, Yada B, Otema MA, Namakula J, Alajo A, Kigozi B, Makumbi RNM, Ball A, Grüneberg WJ, Low JW, Yencho GC (2016) ‘NASPOT 12 O’ and ‘NASPOT 13 O’ sweetpotato. Hortscience 51:291–295

    Google Scholar 

  • Nabubuya A, Namutebi A, Byaruhanga Y, Narvhus J, Wicklund T (2012) Potential use of selected sweetpotato (Ipomea batatas Lam) varieties as defined by chemical and flour pasting characteristics. Food Nutr Sci 3:889–896. http://dx.doi.org/10.4236/fns.2012.37118

    CrossRef  Google Scholar 

  • Namanda S (2012) Current and potential systems for maintaining sweetpotato planting material in areas with prolonged dry seasons: a biological, social and economic framework. PhD Thesis, University of Greenwich, London, UK

    Google Scholar 

  • Namanda S, Gibson RW (2015) Shortage of sweetpotato planting material caused by prolonged dry seasons in Africa: strategies to increase its availability in Uganda. In: Low J, Nyongesa M, Quinn S, Parker M (eds) Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security. CABI, Wallingford, pp 322–329

    CrossRef  Google Scholar 

  • Nimmakayala P, Vajja G, Reddy UK (2011) In: Kole C (ed) “Ipomoea,” in wild crop relatives: genomic and breeding resources. Springer, Berlin

    Google Scholar 

  • Nishiyama I (1971) Evolution and domestication of the sweet potato. Bot Mag Tokyo 84:377–387

    CrossRef  Google Scholar 

  • Nishiyama I, Niyazaki T, Sakamoto S (1975) Evolutionary autoploidy in the sweet potato (Ipomoea batatas (L.) Lam.) and its progenitors. Euphytica 24:197–208

    CrossRef  Google Scholar 

  • O’Brien P (1972) The sweet potato: its origin and dispersal. Am Anthropol 74:342–365

    CrossRef  Google Scholar 

  • Okada Y, Nishiguchi M, Saito A, Kimura T, Mori M, Hanada K, Sakai J, Matsuda Y, Murata T (2002a) Inheritance and stability of the virus-resistant gene in the progeny of transgenic sweet potato. Plant Breed 121:249–253

    CAS  CrossRef  Google Scholar 

  • Okada Y, Saito A, Nishiguchi M, Kimura T, Mori M, Matsuda Y, Murata T (2002b) Microprojectile bombardment-mediated transformation of sweet potato (Ipomoea batatas (L.) Lam). SABRAO J Breed Genet 34:1–8

    Google Scholar 

  • Onwueme IC (1978) The tropical tuber crops: yams, cassava, sweet potato and cocoyams. Wiley, New York. 234 p

    Google Scholar 

  • Oración MZ, Niwa K, Shiotani I (1990) Cytological analysis of tetraploid hybrids between sweet potato and diploid Ipomoea trifida (H.B.K.) Don. Theor Appl Genet 80:617–624

    PubMed  CrossRef  Google Scholar 

  • Otani M, Shimada T, Kimura T, Saito A (1998) Transgenic plants production from embryogenic callus of sweetpotato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnol 15:11–16

    CAS  CrossRef  Google Scholar 

  • Owusu-Mensah E, Oduro I, Ellis WO, Carey EE (2016) Cooking treatment effects on sugar profile and sweetness of eleven-released sweet potato varieties. J Food Process Technol 7:4. http://dx.doi.org/10.4172/2157-7110.1000580

    Google Scholar 

  • Padmaja G (2009) Uses and nutritional data of sweetpotato. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer Science & Business Media BV, The Netherlands, pp 189–234

    CrossRef  Google Scholar 

  • Pesek J, Baker RJ (1969) Desired improvement in relation to selection indices. Can J Plant Sci 49:803–804

    CrossRef  Google Scholar 

  • Peters D (2004) Use of sweet potato in pig production in Asia: agricultural and socio-economic aspects, animalscience.com Reviews, No. 4. Pig News Inf 25(1):25N–34N

    Google Scholar 

  • Poole CF (1955) Sweet potato genetic studies. Tech Bull 27 Hawaii Agr Exp Sta, Honolulu

    Google Scholar 

  • Prakash CS (1994) Sweet potato biotechnology: progress and potential. Biotechnol Dev Monit 18:18–22

    Google Scholar 

  • Prakash CS, Varadarajan U (1992) Genetic transformation of sweet potato by particle bombardment. Plant Cell Rep 11:53–57

    CAS  PubMed  CrossRef  Google Scholar 

  • Prakash CS, Varadarajan U, Kumar AS (1991) Foreign gene transfer to sweet potato (Ipomoea batatas). Hortic Sci 26:492

    Google Scholar 

  • Purseglove J (1965) The spread of tropical crops. In: Baker HK, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 375–386

    Google Scholar 

  • Purseglove JW (1968) Tropical crops, dicotyledons, vol 1. Longman Scientific and Technical, Harlow. 719 p

    Google Scholar 

  • Qaim M (1999) The economic effects of genetically modified orphan commodities: projections for sweetpotato in Kenya. ISAAA and Center for Development Research [ZEF], Bonn. 47 p

    Google Scholar 

  • Rajapakse S, Nilmalgoda SD, Molnara M, Ballarda RE, Austin DF, Bohac JR (2004) Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear-amylase gene sequences. Mol Phylogenet Evol 30:623–632

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodriguez-Bonilla L, Cuevas HE, Montero-Rojas M, Bird-Pico F, Luciano-Rosario D, Siritunga D (2014) Assessment of genetic diversity of sweet potato in Puerto Rico. PLoS One 9:e116184

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Roullier C, Rossel G, Tay D, McKey D, Lebot V (2011) Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol Ecol 20:3963–3977

    CAS  PubMed  CrossRef  Google Scholar 

  • Roullier C, Kambouo R, Paofa J, McKey D, Lebot V (2013) On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity. Heredity 110:594–604

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Saito A, Kimura T, Ideta O, Mori M, Nishiguchi M (1998) Transgenic sweet potato (Ipomoea batatas L. (Lam)) exhibiting resistance to sweet potato feather mottle potyvirus. Sweet Potato Res 7:4

    Google Scholar 

  • Schnell FW (1982) A synoptic study of the methods and categories of plant breeding. Z Pflanzenzüchtung 89:1–18

    Google Scholar 

  • Shiotani I (1988) Genomic structure and the gene flow in sweet potato and related species. In: Exploration and maintenance and utilization of sweet potato genetic resources. First Planning Conference, Lima, Peru. International Potato Centre (CIP), Lima, pp 61–73

    Google Scholar 

  • Shiotani I, Kawase T (1987) Synthetic hexaploids derived from wild species related to sweet potato. Jpn J Breed 37:367–376

    CrossRef  Google Scholar 

  • Shiotani I, Kawase T (1989) Genomic structure of the sweet potato and hexaploids in Ipomoea trifida (H.B.K) Don. Jpn J Breed 39:57–66

    CrossRef  Google Scholar 

  • Shiotani I, Huang ZZ, Sakamoto S, Miyazaki T (1994) The role of the wild Ipomoea trifida germplasm in sweet potato breeding. Acta Hortic (ISHS) 380:388–398

    CrossRef  Google Scholar 

  • Shulte-Geldermann E, Agili S, Ndolo P, Low JW (2012) Net tunnels to protect sweetpotato planting material from disease a guide to construct and maintain tunnels: a guide to construct and maintain tunnels. International Potato Center, Nairobi

    Google Scholar 

  • Shumbusha D, Ndirigwe J, Kankundiye L, Musabyemungu A, Gahakwa G, Ndayemeye PS, Mwanga ROM (2014) ‘RW11-17’, ‘RW11-1860’, ‘RW11-2419’, ‘RW11-2560’, ‘RW11-2910’, and ‘RW11-4923’ sweetpotato. Hortscience 49:1349–1352

    Google Scholar 

  • Shumbusha D, Ndirigwe J, Kankundiye L, Musabyemungu A, Mwanga ROM (2015) Development of dualpurpose sweetpotato varieties through participatory breeding in Rwanda. In: Low J, Nyongesa MS, Quinn S, Parker M (eds) Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security. CABI, Wallingford, pp 79–87

    Google Scholar 

  • Simpson BB, Ogorzaly MC (2000) Economic botany: plants in our world, 3rd edn. McGraw-Hill, New York. 544 p

    Google Scholar 

  • Smith TP, Stoddard S, Shankle M, Schultheis J (2009) Sweetpotato production in the United States. In: Loebenstein G, Thottappilly G (eds) The sweetpotato. Springer Science + Business Media BV, Houten, pp 287–323

    CrossRef  Google Scholar 

  • Song GQ, Honda H, Yamaguchi KI (2004) Efficient Agrobacterium tumefaciens–mediated transformation of sweet potato (Ipomoea batatas (L.) Lam.) from stem explants using a two- step kanamycin-hygromycin selection method. In Vitro Cell Dev Pl 40:359–365

    CAS  CrossRef  Google Scholar 

  • Srisuwan S, Sihachakra D, Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomoea batatas lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171:424–433

    CAS  PubMed  CrossRef  Google Scholar 

  • Stathers T, McEwan M, Gibson R, Mwanga R, Carey E, Namanda S, Abidin E, Low L, Malinga J, Agili S, Andrade M, Mkumbira J (2013) Everything you ever wanted to know about sweetpotato: reaching agents of change ToT manual, sweetpotato seed systems. Int Potato Center Nairobi Kenya 3:93–142

    Google Scholar 

  • Stout AB (1924) The flowers and seed of sweetpotatoes. J N Y Bot Gard 25:153–168

    Google Scholar 

  • Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74(9):1760–1769

    CAS  PubMed  CrossRef  Google Scholar 

  • Thiyagu D, Rafii MY, Mahmud TMM, Latif MA, Malek MA, Sentoor G (2013) Genotype by environment assessment in sweetpotato as leafy vegetable using AMMI model. Pak J Bot 45(3):843–852

    Google Scholar 

  • Ting YC, Kehr AE, Miller JC (1957) A cytological study of the sweetpotato plant Ipomoea batatas (L.) Lam. and its related species. Am Nat 91:197–203

    CrossRef  Google Scholar 

  • Thompson PG, Hong LL, Ukoskit K, Zhu S (1997) Genetic linkage of randomly amplified polymorphic DNA (RAPD) markers in sweetpotato. J Am Soc Hortic Sci 122:79–82

    Google Scholar 

  • Togari Y, Kawahara U (1946) Studies on the self- and cross-incompatibility in sweetpotato (a preliminary report). I. On the different grades of compatibility among the compatible matings. Imp Agr Exp Sta Tokyo Bull 52:1–19. [in Japanese]

    Google Scholar 

  • Tomlins K, Rwiza E, Nyango A, Amour R, Ngendello T, Kapinga R, Rees D, Jolliffe F (2004) The use of sensory evaluation and consumer preference for the selection of sweetpotato cultivars in East Africa. J Sci Food Agric 84:791–799

    CAS  CrossRef  Google Scholar 

  • Tomlins K, Ndunguru G, Stambul K, Joshua N, Ngendello T, Rwiza E, Amour R, Ramadhani B, Kapande A, Westby A (2007) Sensory evaluation and consumer acceptability of pale-fleshed and orange-fleshed sweetpotato by school children and mothers with preschool children. J Sci Food Agric 87:2436–2446

    CAS  CrossRef  Google Scholar 

  • Tomlins K, Owori C, Bechoff A, Menya G, Westby A (2012) Relationship among the carotenoid content, dry matter content and sensory attributes of sweet potato. Food Chem 131:14–21

    CAS  CrossRef  Google Scholar 

  • Truong VD, Pascua YT, Reynolds R, Thompson RL, Palazoğlu TK, Mogol BA, Gökmen V (2014) Processing treatments for mitigating acrylamide formation in sweetpotato french fries. J Agric Food Chem 2014(62):310–316. http://dx.doi.org/10.1021/jf404290v

    CrossRef  CAS  Google Scholar 

  • Tumwegamire S, Kapinga R, Rubaihayo PR, LaBonte DR, Grüneberg WJ, Burgos G, zum Felde T, Carpio R, Pawelzik E, Mwanga ROM (2011) Starch, sucrose, β-carotene, iron, zinc, calcium, and magnesium in East African sweetpotato [Ipomoea batatas (L.) Lam.] germplasm. Hortscience 46:348–357

    CAS  Google Scholar 

  • Ukoskit K, Thompson PG (1997) Autopolyploidy versus allopolyoloidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato. J Am Soc Hortic Sci 122:822–828

    CAS  Google Scholar 

  • Villordon AQ, Labonte DR (1995) Variation in randomly amplified DNA markers and storage root yield in ‘Jewel’ sweetpotato clones. J Am Soc Hortic Sci 120:734–740

    CAS  Google Scholar 

  • Villordon AQ, Labonte DR (1996) Genetic variation among sweetpotatoes propagated through nodal and adventitious sprouts. J Am Soc Hortic Sci 121:170–174

    Google Scholar 

  • Walter WM Jr, Collins WW, Troung VD, Fine TI (1997) Physical compositional and sensory properties of French fry-type products from five sweet potato selections. J Agric Food Chem 45:383–388

    CAS  CrossRef  Google Scholar 

  • Wang H (1964) A study of the self- and cross-incompatibilities in the sweetpotato in Taiwan (Formosa). Proc Am Soc Hortic Sci 84:424–430

    Google Scholar 

  • Wang YW, Samuels TD, Wu YQ (2011) Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet. 2011 122(4):677–686

    CAS  PubMed  CrossRef  Google Scholar 

  • Wedderburn MM (1967) A study of hybridisation involving the sweet potato and related species. J Plant Growth Regul 16:69–75

    Google Scholar 

  • Williams DB, Cope FW (1967) Notes of self-incompatibility in the genus Ipomoea L. Proc Int Symp Trop Root Crop 1:16–30

    Google Scholar 

  • Woolfe JA (1992) Sweet potato: an untapped food resource. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin

    CrossRef  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    CAS  PubMed  CrossRef  Google Scholar 

  • Yada B, Tukamuhabwa P, Wanjala B, Dong-Jin K, Skilton RA, Alajo A, Mwanga ROM (2010) Characterization of Ugandan sweet potato germplasm using fluorescent labelled simple sequence repeat markers. Hortscience 45(2):225–230

    Google Scholar 

  • Yada B, Brown-Guedira G, Alajo A, Ssemakula GN, Mwanga ROM, Yencho GC (2015) Simple sequence repeat marker analysis of genetic diversity among progeny of biparental mapping population of sweetpotato. Hortscience 50(8):1143–1147

    CAS  Google Scholar 

  • Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y (2015) Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata]. PLoS ONE 10: e0124083

    Google Scholar 

  • Yen D (1960) The sweet potato in the Pacific: the propagation of the plant in relation to its distribution. J Polynesian Soc 69:368–375

    Google Scholar 

  • Yen DE (1974) The sweet potato and Oceania: an essay in ethnobotany, Bernice Pauahi Bishop Museum Bulletin (USA) No. 236. Bishop Museum Press, Honolulu. 389 p

    Google Scholar 

  • Yen DE (1976) Sweet potato Ipomoea batatas (Convolvulaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman Scientific and Technical, London, pp 42–45

    Google Scholar 

  • Yen DE (1960) Sweetpotato in historical perspective. In: Villareal RL, Griggs TD (eds) Sweetpotato. Proceedings of the first international symposium, AVRDC, Publ. No. 82–172. pp 17–30

    Google Scholar 

  • Yi G, Shin YM, Choe G, Shin B, Kim YS, Kim KM (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol Lett 29:669–675

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoon UH, Jeong JC, Kwak SS, Yang JW, Kim TH, Lee HU, Nam SS, Hahn JH (2015) Current status of sweetpotato genomics research. J Plant Biotechnol 42:161–167

    Google Scholar 

  • Zhang SS, Liu LF (2005) Utilization of the wild relatives in sweetpotato breeding. In: Liu QC (ed) Sweetpotato breeding and industrialization in China. China Agricultural University Press, Beijing, pp 29–32

    Google Scholar 

  • Zhang T, Oates CG (1999) Relationship between α-amylase degradation and physico-chemical properties of sweet potato starches. Food Chem 65:157–163

    CrossRef  Google Scholar 

  • Zhang D, Cervantes J, Huamán Z, Carey E, Ghislain M (2000) Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genet Resour Crop Evol 47:659–665

    CrossRef  Google Scholar 

  • Zhang D, Rossel G, Kriegner A, Hijmans R (2004) AFLP assessment of diversity in sweetpotato from Latin America and the Pacific Region: its implications on the dispersal of the crop. Genet Resour Crop Evol 51:115–120

    CAS  CrossRef  Google Scholar 

  • Zhang L, Wanga Q, Wanga Q (2009) Sweetpotato in China. In: Loebenstein G, Thottappilly G. (eds) 2009The sweetpotato. Springer Science+Business Media B.V., Dordrecht, pp 325–358

    CrossRef  Google Scholar 

  • Zhao N, Yu X, Jie Q, Li H, Li H, Hu J, Zhai H, He S, Liu Q (2013) A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breed 32:807–820

    CAS  CrossRef  Google Scholar 

  • Zósimo H (ed) (1999) Sweetpotato germplasm management (Ipomoea batatas) training manual. International Potato Center, Lima

    Google Scholar 

Download references

Acknowledgment

This research was undertaken as part of the CGIAR Research Program on Roots, Tubers and Banana (RTB) and HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH). It has also received financial support from the Bill and Melinda Gates Foundation and USAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Grüneberg .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mwanga, R.O.M., Andrade, M.I., Carey, E.E., Low, J.W., Yencho, G.C., Grüneberg, W.J. (2017). Sweetpotato (Ipomoea batatas L.). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_6

Download citation