Skip to main content

Cassava (Manihot esculenta Crantz)

  • Chapter
  • First Online:
Book cover Genetic Improvement of Tropical Crops

Abstract

Cassava is a key food security staple and a competitive feedstock for multiple industrial processes and end uses. Farmers grow hybrids which are reproduced vegetatively. Several programs have used the same breeding scheme for the last 40 years. Significant progress has been made, particularly with the first improved varieties released in the 1980s and 1990s. However, gains slowed down since then. Biotechnology tools, after more than two decades, have not yet had impact on increasing yields. Results from ongoing genomic selection show promising results for high-heritability traits, but not for fresh root yield (FRY). Key challenges to increase FRY are the strong influence of nonadditive genetic effects and the heterozygous nature of breeding parents. There is large within-family variation masking the true breeding value of each progenitor. To improve yields, breeding must shift from making crosses where breeders hope to find hybrids that are superior to those already available (a strategy that has made only slow progress in the last decade or two) to develop and improve inbred progenitors that can produce more reliably better hybrids. The use of inbred progenitors and implementation of reciprocal recurrent selection should be an efficient way to exploit heterosis and epistasis, which are large components in the determination of FRY. Induction of flowering would also accelerate genetic gains. In the near-term future, available molecular markers can be used to improve the breeding value of progenitors rather than in selection of segregating progenies. They can also be used to screen germplasm collections in search of useful traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham A (1957) Breeding of tuber crops in India. Indian J Gen Plant Breed 17:212–217

    Google Scholar 

  • Adeyemo OS, Davis SJ, Chavarriaga P, Tohme J, Ceballos H, Fregene M (2008) Strategies for enhancing flowering in cassava using molecular tools: towards a more efficient breeding program. First Scientific Meeting of the Global Cassava Partnership GCP-1. Ghent. p 51

    Google Scholar 

  • Aiemnaka P, Wongkaew A, Chanthaworn J et al (2012) Molecular characterization of a spontaneous waxy starch mutation in cassava (Manihot esculenta Crantz). Crop Sci 52:2121–2130

    Article  CAS  Google Scholar 

  • Akano AO, Dixon AGO, Mba C, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525

    Article  CAS  PubMed  Google Scholar 

  • Akinbo O, Gedil M, Ekpo EJA, Oladele J, Dixon AGO (2007) Detection of RAPD markers-linked to resistance to cassava anthracnose disease. Afr J Biotechnol 6:677–682

    CAS  Google Scholar 

  • Akinbo O, Labuschagne M, Fregene M (2010) Embryo rescue as a method to develop and multiply a backcross population of cassava (Manihot esculenta Crantz) from an interspecific cross of Manihot esculenta ssp. flabellifolia. Afr J Biotechnol 9:7058–7062

    Google Scholar 

  • Akinbo O, Labuschagne M, Fregene M (2011) Introgression of whitefly (Aleurotrachelus socialis) resistance gene from F1 inter-specific hybrids into commercial cassava. Euphytica 183:19–26

    Article  CAS  Google Scholar 

  • Akinbo O, Labuschagne M, Marin J et al (2012) QTL analysis for root protein in a backcross family of cassava derived from Manihot esculenta ssp flabellifolia. Trop Plant Biol 5:1–12

    Article  CAS  Google Scholar 

  • Allem AC (1999) The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica 107:123–133

    Article  Google Scholar 

  • Allem AC (2002) The origins and taxonomy of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 1–16

    Google Scholar 

  • Allem AC, Mendes RA, Salomão AN, Burle ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz subspecies escultenta, Euphorbiaceae). Euphytica 120:127–132

    Article  CAS  Google Scholar 

  • Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis 93:1139–1145

    Article  CAS  Google Scholar 

  • Álvarez E, Mejía JF, Valle T (2003) Molecular and pathogenicity characterization of Sphaceloma manihoticola isolates from south-central Brazil. Plant Dis 87:1322–1328

    Article  Google Scholar 

  • Angel F, Barney VE, Tohme J, Roca WM (1996) Stability of cassava plants at the DNA level after retrieval from 10 years of in vitro storage. Euphytica 90:307–313

    Article  Google Scholar 

  • Anyanwu CN, Ibeto CN, Ezeoha SL, Ogbuagu NJ (2016) Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew Energy 81:745–752

    Article  Google Scholar 

  • Asante IK, Offei SK (2003) RAPD-based genetic diversity study of fifty cassava (Manihot esculenta Crantz) genotypes. Euphytica 131:113–119

    Article  CAS  Google Scholar 

  • Ashby JA, Quirós CA, Rivera YM (1987) Farmer participation in on-farm variety trials. Agricultural Administration (Research and Extention) Network Discussion Paper No. 22. London. Overseas Development Institute

    Google Scholar 

  • Balagopalan C (2002) Cassava utilization in food, feed and industry. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 301–318

    Chapter  Google Scholar 

  • Becerra Lopez-Lavalle LA (2015) Revisiting cassava genetic diversity reveals eco-geographic signature of the crop’s domestication. Plant and Animal Genome XXIII, San Diego

    Google Scholar 

  • Beeching JR, Marmey P, Gavalda MC, Noirot M, Haysom HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava (Manihot esculenta Cranz) germplasm using molecular markers. Ann Bot 72:515–520

    Article  CAS  Google Scholar 

  • Belalcazar J, Dufour D, Pizarro M et al (2016) High-throughput phenotyping and improvement in breeding cassava for increased carotenoids in the roots. Crop Sci 56:2916–2925

    Article  Google Scholar 

  • Bellotti AC, Arias B (2001) Host plant resistance to whiteflies with emphasis on cassava as a case study. Crop Prot 20:813–823

    Article  Google Scholar 

  • Benesi IRM, Labuschagne MT, Herselman L, Mahungu N (2010) Ethnobotany, morphology and genotyping of cassava germplasm from Malawi. J Biol Sci 10:616–623

    Article  Google Scholar 

  • Bernardo R (2014) Essentials of plant breeding. Stemma Press, Woodbury

    Google Scholar 

  • Bertram RB (1993) Application of molecular techniques to genetic resources of cassava (Manihot esculenta Crantz, Euphorbiaceae): interspecific evolutionary relationships and intraspecific characterization. Ph.D. dissertation. University of Mariland. 465 pp

    Google Scholar 

  • Bertram RB, Schaal BA (1993) Phylogeny of Manihot and the evolution of cassava. CBN Newsl 1:4–6

    Google Scholar 

  • Beyene G, Chauhan RJ, Wagaba H et al (2016) Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis. Mol Plant Pathol 17:1095–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi H, Aileni M, Zhang P (2010) Evaluation of cassava varieties for cassava mosaic disease resistance jointly by agro-inoculation screening and molecular markers. African J Plant Sci 4(9):330–338

    CAS  Google Scholar 

  • Biggs BJ, Smith MK, Scott KJ (1986) The use of embryo culture for the recovery of plants from cassava (Manihot esculenta Crantz) seeds. Plant Cell Tissue Organ Cult 6:229–234

    Article  Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker assisted selection in common Beans and Cassava. In: Guimaraes EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-Assisted Selection (MAS) in crops, livestock, forestry and fish: current status and the way forward. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 81–115

    Google Scholar 

  • Bolhuis GG (1953) A survey of some attempts to breed cassava varieties with a high content of proteins in the roots. Euphytica 2:107–112

    Article  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE et al (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol. doi:10.1038/nbt.3535

  • Bueno A (1991) Estimación de los parámetros genéticos en la yuca. In: Hershey CH (ed) Mejoramiento genético de la yuca en América Latina. CIAT Publication, Cali, pp 197–220

    Google Scholar 

  • Buitrago AJA (1990) La yuca en la alimentación animal. Centro Internacional de Agricultura Tropical. CIAT, Cali. 446 p

    Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Byrne D (1984) Breeding cassava. Plant Breed Rev 2:73–134

    Google Scholar 

  • Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96(5):586–592

    Article  CAS  PubMed  Google Scholar 

  • Calvert LA, Cuervo M, Lozano I, Villareal N, Arroyave J (2008) Identification of three strains of a virus associated with cassava plants affected by frogskin disease. J Phytopathol 156:647–653

    Article  CAS  Google Scholar 

  • Caparros Megido R, Alabi T, Nieus C et al (2016) Optimisation of a cheap and residential small-scale production of edible crickets with local by products as an alternative protein-rich human food source in Ratanakiri Province, Cambodia. J Sci Food Agric 96:627–632

    Article  PubMed  Google Scholar 

  • Carmo CD, Santos DB, Alves LB, Oliveira GAF, Oliveira EJ (2015) Development of TRAP (Target Region Amplification Polymorphism) as new tool for molecular genetic analysis in cassava. Plant Mol Biol Rep 33:1953–1966

    Article  CAS  Google Scholar 

  • Carvalho C-BLJ, Schaal BA (2001) Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica 120:133–142

    Article  CAS  Google Scholar 

  • Carvalho LJCB, de Souza CRB, Cascardo JCM, Junior CB, Campos L (2004) Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Mol Biol 56:643–659

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Becerra LA, Calle F, Morante N, Ovalle T, Pérez JC, Hershey C (2016) Genetic distance and heterosis in cassava. Euphytica 210:79–92. doi:10.1007/s10681-016-1701-7

    Article  CAS  Google Scholar 

  • Ceballos H, Calle F (2010) Cassava. In: Fajardo J, NeBambi L, Larinde MI, Rosell C, Barker I, Roca W, Chujoy E (eds) Quality declared planting material. Protocols and standards for vegetatively propagated crops. FAO Plant Production and Protection Paper 195. p 33–40. Food and Agriculture Organization (FAO) of the United Nations, Rome

    Google Scholar 

  • Ceballos H, Fregene M, Pérez JC, Morante N, Calle F (2007) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food Staples. Blackwell Publishing, Ames, pp 365–391

    Chapter  Google Scholar 

  • Ceballos, Hershey (2016) Road map for cassava genetic improvement. Proceedings of the World Congress on Root and Tuber Crops and Third Scientific Conference of the Global Cassava Partnership for the 21st Century. Nanning, China. January 2016

    Google Scholar 

  • Ceballos H, Hershey C, Becerra-López-Lavalle LA (2012) New approaches to cassava breeding. Plant Breed Rev 36:427–504. Hoboken, Wiley-Blackwell

    Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–515

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Jaramillo JJ, Salazar S, Pineda LM, Calle F, Setter T (2017) Induction of flowering in cassava through grafting. J Plant Breed Crop Sci 9:19–29

    Article  Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceballos H, Morante N, Sánchez T, Ortiz D, Aragón I, Chávez AL, Pizarro M, Calle F, Dufour D (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Sci 53:2342–2351

    Article  CAS  Google Scholar 

  • Ceballos H, Okogbenin E, Pérez JC, Becerra LA, Debouck D (2010) Cassava. In: Bradshaw J (ed) Root and tuber crops. Springer Publishers, New York, pp 53–96

    Chapter  Google Scholar 

  • Ceballos H, Pérez JC, Joaqui-B O, Lenis JI, Morante N, Calle F, Hershey H (2016) Cassava breeding I: the value of breeding value. Front Plant Sci. doi:10.3389/fpls.2016.01227

  • Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011) Adaptation of cassava to changing climates. In: Yadav S, Redden B, Hatfield JL, Lotze-Campen H (eds) Crop adaptation to climate change. Wiley-Blackwell Publishers. pp 411–425

    Google Scholar 

  • Ceballos H, Sánchez T, Morante N et al (2007) Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55:7469–7476

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Sánchez T, Tofiño AP et al (2008) Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 56:7215–7222

    Article  CAS  PubMed  Google Scholar 

  • Chalwe A, Melis R, Shanahan P, Chiona M (2015) Inheritance of resistance to cassava green mite and other useful agronomic traits in cassava grown in Zambia. Euphytica 205:103–119

    Article  Google Scholar 

  • Chauhan RD, Beyene G, Kalyaeva M, Fauquet CM, Taylor N (2015) Improvements in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) for large-scale production of transgenic plants. Plant Cell Tiss Org Cult 121:591–603

    Article  CAS  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Fu Y, Xia Z, Jie L, Wang H, Lu C, Wang W (2012) Analysis of QTL for yield-related traits in cassava using an F1 population from non-inbred parents. Euphytica 187:227–234

    Article  Google Scholar 

  • Chen H, Xu M-l, Guo Q, Yang L, Ma Y (2016) A review on present situation and development of biofuels in China. J Energy Inst 89:248–255

    Article  CAS  Google Scholar 

  • Chepkoech E, Kinyua M, Kiplagat O, Arunga EE, Kimno S (2015) Genetic diversity of cassava mutants, hybrids and landraces using simple sequence repeat markers. Am J Exp Agric 5(4):287–294

    Article  Google Scholar 

  • Chipeta MM, Bokosi JM, Saka VW, Benesi IRM (2013) Combining ability and mode of gene action in cassava for resistance to cassava green mite and cassava mealy bug in Malawi. J Plant Breed Crop Sci 5:195–202

    Article  Google Scholar 

  • CIAT (1991) In: Hershey CH (ed). Mejoramiento genético de la yuca en América Latina. CIAT, Cali p 426. (ISBN 958-9183-16-6)

    Google Scholar 

  • Cock J (1985) Cassava. New potential for a neglected crop. Westview Press, Boulder

    Google Scholar 

  • Cours G (1951) Le manioc a Madagascar. Memoires de L’Institut Scientifique de Madagascar Serie B 3:203–400

    Google Scholar 

  • Crow JF (2000) The rise and fall of overdominance. Plant Breed Rev 17:225–257

    Google Scholar 

  • CRS (2010) Final report on the Great Lakes Cassava initiative. 137p. http://www.crs.org/sites/default/files/tools-research/final-report-great-lakes-cassava-initiative.pdf

  • Davrieux F, Dufour D, Dardenne P et al (2016) LOCAL regression algorithm improves NIRS predictions when the target constituent evolves in breeding populations. JNIRS 24:109–117

    CAS  Google Scholar 

  • De Bruijn GH (1977) Influence of day length on the flowering of cassava. Trop Root Tuber Crops Newsl 10:1–3

    Google Scholar 

  • De Carvalho RD, Guerra-M M (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136:159–168

    Article  PubMed  Google Scholar 

  • De Oliveira EJ, de Resende V, da Silva Santos V et al (2012) Genome-wide selection in cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • Delgado A, Hays DB, Bruton RK, Ceballos H, Novo A, Boi E, Gomez Selvaraj M (2017) Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz). Plant Methods 13:65. https://doi.org/10.1186/s13007-017-0216-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Deputié A, Salick J, McKey D (2011) Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating Neotropical genus restricted to dry environments. J Biogeogr 38(6):1033–1043

    Article  Google Scholar 

  • Diasolua Ngudi D, Kuo Y-H, Lambein F (2003) Amino acid profiles and protein quality of cooked cassava leaves or ‘saka-saka’. J Sci Food Agric 83:529–534

    Article  CAS  Google Scholar 

  • Duitama J, Kafuri L, Tello D, Leiva AM, Hofinger B, Datta S, Lentini Z, Aranzales E, Till B, Ceballos H (2017) Deep assessment of genomic diversity in cassava for herbicide tolerance and starch biosynthesis. Comput Struct Biotechnol J 15:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easwari Amma CS, Sheela N, Thankamma Pillai PK (1995) Combining ability analysis in cassava. J Root Crops 21(2):65–71

    Google Scholar 

  • El-Sharkawy MA (2009) Pioneering research on C4 leaf anatomical, physiological, and agronomic characteristics of tropical monocot and dicot plant species: implications for crop water relations and productivity in comparison with C3 cropping systems. Photosynthetica 47:163–183

    Article  Google Scholar 

  • Epperson JE, Pachico DH, Guevara CL (1997) A cost analysis of maintaining cassava plant genetic resources. Crop Sci 37:1641–1649

    Article  Google Scholar 

  • Escobar RH, Mafla G, Roca WM (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16:474–478

    Article  CAS  Google Scholar 

  • Esuma W, Herselman L, Labuschagne MT et al (2016) Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica. doi:10.1007/s10681-016-1772-5

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, New York

    Google Scholar 

  • FAO (2013) In: Howeler R, NeBambi L, Thomas G (eds) Save and grow: cassava. A guide to sustainable production intensification. Food and Agriculture Organization (FAO) of the United Nations, Rome, p 129 p. ISBN 978-92-5-107641-5

    Google Scholar 

  • Ferguson ME, Hearne SJ, Close TJ et al (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124(4):685–695

    Article  CAS  PubMed  Google Scholar 

  • Ferguson ME, Rabbi IY, Kim DJ, Gedil M, Becerra Lopez-Lavalle LA, Okogbenin E (2011) Molecular markers and their application to cassava breeding: past, present and future. Trop Plant Biol 5:95–109

    Article  CAS  Google Scholar 

  • Fisher T, Buerlee D, Edmeades G (2014) Crop yields and global food security. Will yield increase continue to feed the world? ACIAR Monograph, vol 158. Australian Centre for International Agricultural Research, Canberra, pp 285–289

    Google Scholar 

  • Fregene M, Angel F, Gomez R, Rodríguez F, Chavarriaga P, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    Article  CAS  Google Scholar 

  • Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet 100:678–685

    Article  CAS  Google Scholar 

  • Fregene M, Matsumura H, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host–plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56(4):563–571

    Article  CAS  PubMed  Google Scholar 

  • Fregene M, Ospina JA, Roca W (1999) Recovery of cassava (Manihot esculenta Crantz) plants from culture of immature zygotic embryos. Plant Cell Tissue Organ Cult 55:39–43

    Article  Google Scholar 

  • Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492. https://doi.org/10.3389/fpls.2015.00492

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallais A, Bordes J (2007) The use of doubled haploids in recurrent selection and hybrid development in maize. Crop Sci 47:S191–S200

    Google Scholar 

  • Gardner CO (1961) An evaluation of effects of mass selection and seed irradiation with thermal neutrons on yields of corn. Crop Sci 1:241–245

    Article  Google Scholar 

  • Gonçalves Fukuda WM, de Oliveira, Silva S, Iglesias C (2002) Cassava breeding. Crop Breed Appl Biotech 2(4):617–638

    Article  Google Scholar 

  • Gonçalvez Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in Northeastern Brazil. Document CNPMF 99. EMBRAPA, Cruz das Almas. Bahia

    Google Scholar 

  • Graner EA (1935) Contribuição para o estudo citológico da mandioca. Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, pp 1–28

    Google Scholar 

  • Graner EA (1942) Genética da Manihot. I Hereditariedade da forma da folha e da coloração da película externa das Raízes em Manihot utilíssima. Pohl Bragantia 2:13–22

    Article  Google Scholar 

  • Grüneberg W, Mwanga R, Andrade M, Espinoza J (2009) Breeding clonally propagated crops. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmer participation. Food and Agriculture Organization of the United Nations, Rome, pp 175–322

    Google Scholar 

  • Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79:433–439

    Article  CAS  PubMed  Google Scholar 

  • Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crops Res 2:193–226

    Article  Google Scholar 

  • Hallauer AR, Miranda Fo JB (1981) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hershey CH. 2008. A global conservation strategy for cassava (Manihot esculenta) and wild Manihot species (https://www.croptrust.org/wp-content/uploads/2014/12/cassava-strategy.pdf)

  • Hershey CH, Ocampo-N CH (1989) New marker genes found in cassava. Cassava Newsl 13(1):1–5

    Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Howeler RH, Maung Aye T (2014) Sustainable management of cassava in Asia: from research to practice. International Centre for Tropical Agriculture (CIAT); The Nippon Foundation, Vietnam. 168 p. (http://hdl.handle.net/10568/65172)

    Google Scholar 

  • Hussain A, Brushuk W, Ramírez H, Roca W (1987) Identification of cassava (Manihot esculenta Crantz) cultivars by eletrophoretic patterns of esterase isozymes. Seed Sci Technol 15:19–22

    CAS  Google Scholar 

  • IBGE (2014) Instituto Brasileiro de Geografia e Estatística (http://www.ibge.gov.br/). Produção Agrícola Municipal

  • Ibrahim AB, Heredia FF, Pinheiro CB, Aragao FJL, Campos FAP (2008) Optimization of somatic embryogenesis and selection regimes for particle bombardment of friable embryogenic callus and somatic cotyledons of cassava (Manihot esculenta Crantz). Afr J Biotechnol 7:2790–2797

    CAS  Google Scholar 

  • Iglesias C, Mayer J, Chávez AL, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94:367–373

    Article  CAS  Google Scholar 

  • Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465

    Article  CAS  PubMed  Google Scholar 

  • Jennings DL (1957) Further studies in breeding cassava for virus resistance. E Afr Agric J 22:213–219

    Google Scholar 

  • Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. Euphytica 12:69–76

    Article  Google Scholar 

  • Jennings DL, Hershey CH (1985) Cassava breeding: a decade of progress from international programmes. In: Russell GE (ed) Progress in plant breeding-1. Butterworths, London, pp 89–116

    Chapter  Google Scholar 

  • Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 149–166

    Chapter  Google Scholar 

  • Joaqui BO, Lenis JI, Calle F et al (2016) Cassava breeding II: phenotypic correlations through the different stages of selection. Front Plant Sci 7:1649. (in press)

    Google Scholar 

  • Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti- Kaerlas J, Møller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol 139:363–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jos JS, Bai KV (1981) Functional male sterility in cassava. Curr Sci (Banglare) 50:1035–1036

    Google Scholar 

  • Jos JS, Hrishi N (1976) Inheritance of leaf shape in cassava. J Root Crop 2(2):10–12

    Google Scholar 

  • Jos, Nair (1984) Genetics of male sterility in a genotype of cassava. Curr Sci (Bangalore) 53:494–496

    Google Scholar 

  • Kamau J, Melis R, Laing M, Derera J, Shanahan P, Ngugi E (2010) Combining the yield ability and secondary traits of selected cassava genotypes in the semi-arid areas of Eastern Kenya. J Plant Breed Crop Sci 2(7):181–191

    Google Scholar 

  • Kamau J, Melis R, Laing M, Derera J, Shanahan P, Ngugi ECK (2011) Farmers’ participatory selection for early bulking cassava genotypes in semi-arid Eastern Kenya. J Plant Breed Crop Sci 3:44–52

    Google Scholar 

  • Karlström A, Calle F, Salazar S, Morante N, Dufour D, Ceballos H (2016) Biological implications in cassava for the production of amylose-free starch: impact on root yield and related traits. Front Plant Sci 7:604. doi:10.3389/fpls.2016.00604

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawano K (1980) Cassava. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, CSSA, Madison, pp 225–233

    Google Scholar 

  • Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335

    Article  Google Scholar 

  • Kawano K, Amaya A, Daza P, Ríos M (1978) Factors affecting efficiency of hybridization and selection in cassava (Manihot esculenta Crantz). Crop Sci 18:373–376

    Article  Google Scholar 

  • Kawano K, Cock JH (2005) Breeding cassava for underprivileged: institutional, socio-economic and biological factors for success. J Crop Improv 14:197–219

    Article  Google Scholar 

  • Kawano K, Goncalves Fukuda WM, Cenpukdee U (1987) Genetic and environmental effects on dry matter content of cassava root. Crop Sci 27:69–74

    Article  Google Scholar 

  • Kawano K, Narintaraporn K, Narintaraporn P et al (1998) Yield improvement in a multistage breeding program for cassava. Crop Sci 38:325–332

    Article  Google Scholar 

  • Kaweesi T, Kawuki R, Kyaligonza V, Baguma Y, Tusiime G, Ferguson ME (2014) Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load. Virol J 11:216. doi:10.1186/s12985-014-0216-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaweesi T, Kyaligonza V, Baguma Y, Kawuki R, Ferguson M (2016) Inbreeding enhances field resistance to cassava brown streak viruses. J Plant Breed Crop Sci 8:138–149

    Article  Google Scholar 

  • Kawuki R, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684

    Article  CAS  Google Scholar 

  • Kawuki RS, Nuwamanya E, Labuschagne MT, Herselman L, Ferguson ME (2011) Segregation of selected agronomic traits in six S1 cassava families. J Plant Breed Crop Sci 3:154–160

    Google Scholar 

  • Kawuki RS, Pariyo A, Amuge T et al (2011) A breeding scheme for local adoption of cassava (Manihot esculenta Crantz). J Plant Breed Crop Sci 3:120–130

    Google Scholar 

  • Keating B (1982) Environmental effects on growth and development of cassava (Manihot esculenta Crantz) with special reference to photoperiod and temperature. Cassava News 1(10):10–12

    Google Scholar 

  • Kemp BP, Beeching JR, Cooper RM (2005) cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassava. Mol Plant Pathol 6:113–123

    Article  CAS  PubMed  Google Scholar 

  • Kemp BP, Horne J, Bryant A, Cooper RM (2004) Xanthomonas axonopodis gumD gene is essential for EPS production and pathogenicity and enhances epiphytic survival on cassava (Manihot esculenta). Physiol Mol Plant Pathol 64:209–218

    Article  CAS  Google Scholar 

  • Kizito E, Rönnberg-Wästljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A (2007) Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas 144:129–136

    Article  Google Scholar 

  • Koehorst-van Putten HJJ, Sudarmonowati E, Herman M, Pereira-Bertram IJ, Wolters AMA, Meima H et al (2012) Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia. Transgenic Res 21:39e50

    Article  CAS  Google Scholar 

  • Kunkeaw S, Yoocha T, Sraphet S et al (2011) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Mol Breed 27:67–75

    Article  Google Scholar 

  • Lancaster PA, Brooks JE (1983) Cassava leaves as human food. Econ Bot 37:331–348

    Article  Google Scholar 

  • Lefèvre E, Charrier A (1993) Heredity of seventeen isozyme loci in cassava (Manihot esculenta Crantz). Euphytica 66:171–178

    Article  Google Scholar 

  • Legg JP, Jeremiah SC, Obiero HM et al (2011) Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res 159:161–170

    Article  CAS  PubMed  Google Scholar 

  • Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT (2012) Iron and protein biofortification of cassava: lessons learned. Curr Opin Biotechnol 23:257–264

    Article  CAS  PubMed  Google Scholar 

  • Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:736–740

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Ren J, Gao Z, Gao S, Luo X, Dong L, Scipioni A (2016) Identification of critical success factors for sustainable development of biofuel industry in China based on grey decision-making trial and evaluation laboratory (DEMATEL). J Clean Prod 131:500–508

    Article  Google Scholar 

  • Liu J, Zheng Q, Ma Q, Gadidasu KK, Zhang P (2011) Cassava genetic transformation and its application in breeding. J Integr Plant Biol 53:552–569

    Article  CAS  PubMed  Google Scholar 

  • Lokko Y, Dixon AGO, Offei SK, Danquah EY (2006) Combining ability analysis of resistance to mosaic virus disease in cassava. Afr Crop Sci J 14(3):221–230

    Google Scholar 

  • Lokko Y, Dixon A, Offei S, Danquah E, Fregene M (2006) Assessment of genetic diversity among African cassava Manihot esculenta Crantz accessions resistant to the cassava mosaic virus disease using SSR markers. Genet Resour Crop Evol 53:1441–1453

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Lozano JC, Cock JH, Castaño J (1978) New developments in cassava storage. In: Brekelbaum T, Bellotti A, Lozano JC (eds) Proceedings of cassava protection workshop. CIAT, Cali, pp 135–141

    Google Scholar 

  • Ly D, Hamblin M, Rabbi I et al (2013) Relatedness and genotype x environment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 53:1312–1325

    Article  Google Scholar 

  • Magoon ML, Krishnan R, Bai KV (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34:612–626

    Article  Google Scholar 

  • Manu-Aduening JA, Lamboll RI, Ampong Mensah G, Lamptey JN, Moses E, Dankyi AA, Gibson RW (2006) Development of superior cassava cultivars in Ghana by farmers and scientists: the process adopted, outcomes and contributions and changed roles of different stakeholders. Euphytica 150:47–61

    Article  Google Scholar 

  • Maredia MK, Reyes BA, Manu-Aduening J et al (2016) Testing alternative methods of varietal identification using DNA fingerprinting: results of pilot studies in Ghana and Zambia. MSU International Development Working Paper No. 149. 36 p

    Google Scholar 

  • Marmey P, Beeching J, Hamon S, Charrier A (1993) Evaluation of cassava (Manihot esculenta Crantz.) germplasm using RAPD markers. Euphytica 74:203–209

    CAS  Google Scholar 

  • Maruthi MN, Bouvaine S, Tufan HA, Mohammed IU, Hillocks RJ (2014) Transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease. PLoS One. doi:10.1371/journal.pone.0096642

  • Mkumbira J, Chiwona-Karltun L, Lagercrantz U et al (2003) Classification of cassava into ‘bitter’ and ‘cool’ in Malawi: from farmers’ perception to characterisation by molecular markers. Euphytica 132:7–22

    Article  Google Scholar 

  • Molo R, Aool W, Adumo S, Mutisya DL (2016) Integrating cassava varieties and Typhlodramulus aripo to sustain biological control of cassava green mite. Afr Crop Sci J 24(s1):117–126

    Article  Google Scholar 

  • Monger WA, Seal S, Cotton S, Foster GD (2001) Identification of different isolates of Cassava brown

    Google Scholar 

  • Mongomake K, Doungous O, Khatabi B, Fondong VN (2015) Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon. SpringerPlus 4:477. doi:10.1186/s40064-015-1272-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Morante N, Ceballos C, Sánchez T et al (2016) Discovery of new spontaneous sources of amylose-free cassava starch and analysis of their structure and techno-functional properties. Food Hydrocoll 56:383–395

    Article  CAS  Google Scholar 

  • Morante N, Sánchez T, Ceballos H et al (2010) Tolerance to post-harvest physiological deterioration in cassava roots. Crop Sci 50:1333–1338

    Article  Google Scholar 

  • Morillo-C Y, Sánchez T, Morante N, Chávez AL, Morillo-C AC, Bolaños A, Ceballos H (2012) Estudio preliminar de herencia del contenido de carotenoides en raíces de poblaciones segregantes de yuca (Manihot esculenta Crantz). Acta Agron 61(3):253–264

    Google Scholar 

  • Moyib KO, Mkumbira J, Odunola OA, Dixon AG, Akoroda MO, Kulakow P (2015) Genetic variation of postharvest physiological deterioration susceptibility in a cassava germplasm. Crop Sci 55:2701–2711

    Article  CAS  Google Scholar 

  • Moyib OK, Odunola OA, Dixon AGO (2007) SSR markers reveal genetic variation between improved cassava cultivars and landraces within a collection of Nigerian cassava germplasm. Afr J Biotechnol 6:2666–2674

    Article  CAS  Google Scholar 

  • Muoki PN, Maziya-Dixon B (2010) Household utilization of manioc (Manihot esculenta Crantz) in northern Mozambique. Ecol Food Nutr 49:337–356

    Article  PubMed  Google Scholar 

  • Nassar NMA (1978) Conservation of the genetic resources of cassava (Manihot esculenta): determination of wild species localitities with emphasis on probably origin. Econ Bot 32:311–320

    Article  Google Scholar 

  • Nassar NMA (2000) Cytogenetics and evolution of cassava (Manihot esculenta Crantz). Genet Mol Biol 23:1003–1014

    Article  Google Scholar 

  • Nassar NMA, Ortiz R (2008) Cassava genetic resources: manipulation for crop improvement. Plant Breed Rev 31:247–275

    Google Scholar 

  • Nguyen TLT, Gheewala SH, Garivait S (2007) Full chain energy analysis of fuel ethanol from cassava in Thailand. Environ Sci Technol 41:4135–4142

    Article  CAS  PubMed  Google Scholar 

  • Nichols RFW (1947) Breeding cassava for virus resistance. East Afr Agric J 12:184–194

    Google Scholar 

  • Njenga P, Edema R, Kamay J (2014) Combining ability for beta-carotene and important quantitative traits in a cassava F1 population. J Plant Breed Crop Sci 6(2):24–30

    Article  CAS  Google Scholar 

  • Njoku DN, Gracen VE, Offei SK, Asante IK, Egesi C, Kulakow P, Ceballos H (2015) Parent-offspring regression analysis for total carotenoids and some agronomic traits in cassava. Euphytica. doi:10.1007/s10681-015-1482-4

  • Njoku DN, Ikeogu UN, Ewa F, Egesi C (2015) Crossability and germinability potentials of some cassava (Manihot esculenta Crantz) progenitors for selection. J Plant Breed Crop Sci 7(3):61–66

    Article  CAS  Google Scholar 

  • Normanha ES (1970) Cassava breeding work at the São Paulo State. Agronomic Institute, Campinas, Brazil. In: Trabalhos do Encontro de Engenheiros Agrônomos do Estado de São Paulo, Brazil. pp 40–47

    Google Scholar 

  • Ntui VO, Kong K, Khan RS, Igawa T, Janavi GJ, Rabindran R et al (2015) Resistance to Sri Lankan cassava mosaic virus (SLCMV) in genetically engineered cassava cv. KU50 through RNA silencing. PLoS One 10(4):e0120551. doi:10.1371/journal.pone.0120551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nweke F (2004) New challenges in the cassava transformation in Nigeria and Ghana, EPT Discussion Paper, vol 118. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Odipio J, Alicai T, Nusinow D, Bart R, Ingelbrecht I, Taylor N (2016) CRISPR/CAS9 genome editing of putative cassava flowering genes. Proceedings of the World Congress on Root and Tuber Crops and Third Scientific Conference of the Global Cassava Partnership for the 21st Century. Nanning, China. Jan 2016

    Google Scholar 

  • Odipio J, Ogwok E, Taylor NJ, Halsey M, Bua A, Fauquet CM, Alicai T (2014) RNAi-derived field resistance to cassava brown streak disease persists across the vegetative cropping cycle. GM Crops Food 5:16–19

    Article  PubMed  Google Scholar 

  • Okechukwu RU, Dixon AGO (2009) Performance of improved cassava genotypes for early bulking, disease resistance, and culinary qualities in an Inland Valley ecosystem. Agron J 101:1258–1265

    Article  Google Scholar 

  • Okogbenin E, Egesi CN, Olasanmi B et al (2012) Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Sci 52:2576–2586

    Article  CAS  Google Scholar 

  • Okogbenin E, Fregene M (2002) Genetic analysis and QTL mapping of early bulking in an F1 segregating population from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 106:58–66

    Article  CAS  PubMed  Google Scholar 

  • Okogbenin E, Fregene M (2003) Genetic mapping of QTL affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 107:1452–1462

    Article  CAS  PubMed  Google Scholar 

  • Okogbenin E, Porto MCM, Dixon AGO (1998) Influence of planting season on incidence and severity of African cassava mosaic disease in the subhumic zone of Nigeria. In: Akoroda MO, Ekanayake IJ (eds) Root crops and poverty alleviation. International Institute of Tropical Agriculture (IITA), Ibadan, pp 388–392

    Google Scholar 

  • Okogbenin E, Porto MCM, Egesi C et al (2007) Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. Crop Sci 47:1895–1904

    Article  Google Scholar 

  • Olasanmi B, Akoroda MO, Okogbenin E et al (2014) Bulked segregant analysis identifies molecular markers associated with early bulking in cassava (Manihot esculenta Crantz). Euphytica 195(2):235–244

    Article  CAS  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Orrego JI, Hershey CH (1984) Almacenamiento del pólen de yuca (Manihot esculenta Crantz) por medio de liofilización y varios regímenes de humedad y temperatura. Acta Agron 34(1):21–25

    Google Scholar 

  • Otti G, Fakoya A, Andrew I, Gedil M (2011) Development of genomic tools for verification of hybrids and selfed progenies in cassava (Manihot esculenta). Afr J Biotechnol 10:17400–17408

    CAS  Google Scholar 

  • Owolade OF, Dixon AGO, Adeoti AYA (2006) Diallel analysis of cassava genotypes to anthracnose disease. World J Agric Sci 2:98–104

    Google Scholar 

  • Parkes EY, Fregene M, Dixon A, Peprah BB, Labuschagne MT (2013) Combining ability of cassava genotypes for cassava mosaic disease and cassava bacterial blight, yield and its related components in two ecological zones in Ghana. Euphytica 194:13–24

    Article  Google Scholar 

  • Patil BL, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Mol Plant Pathol 12(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Perera PIP, Ordoñez CA, Becerra López-Lavalle LA, Dedicova B (2013) A milestone in the doubled haploid pathway of cassava. Protoplasma 251:233–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Perera PIP, Dedicova B, Ordoñez C, Kularatne JDJS, Quintero M, Ceballos H (2012) Recent advances in androgenesis induction of cassava (Manihot esculenta Crantz). Acta Hortic 961:319–325

    Article  Google Scholar 

  • Pérez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Alvarez E (2005) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145(1–2):77–85

    Article  CAS  Google Scholar 

  • Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, Arias B, Bellotti AC (2005) Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci 45:1491–1496

    Article  Google Scholar 

  • Pérez JC, Ceballos H, Ramirez IC, Lenis JI, Calle F, Morante N, Lentini M. del C. (2010) Adjustment for missing plants in cassava evaluation trials. Euphytica 172(1):59–65

    Article  Google Scholar 

  • Prakash A (2008) Cassava: international market profile. Background paper for the Competitive Commercial Agriculture in Sub–Saharan Africa (CCAA) Study. Trade and Markets Division. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudencio CY, Orkwor GC, Kissiedu AFK (1992) The relationships between cassava variety set characteristics, farmers’ food security objectives, environmental and socio-economic conditions in Africa. Agric Syst 39:387–408

    Article  Google Scholar 

  • Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, Ikpan AS, Ly D, Jannink J-L (2014) Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. Crop Sci 54:1384–1396

    Article  CAS  Google Scholar 

  • Rabbi IY, Hamblin MT, Lava Kumar P, Gedil MA, Ikpan AS, Jannink J-L, Kulakow PA (2014) High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping by sequencing and its implications for breeding. Virus Res 186:87–96

    Article  CAS  PubMed  Google Scholar 

  • Rabbi I, Kulakow P, Manu-Aduening J et al (2015) Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (Manihot esculenta Crantz). BMC Genet 16:115. doi:10.1186/s12863-015-0273-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raemakers K, Schreuder M, Pereira I, Munyikwa T, Jacobsen E, Visser R (2001) Progress made in FEC transformation of cassava. Euphytica 120:15–24

    Article  CAS  Google Scholar 

  • Raemakers CJJM, Sofiari E, Taylor NJ, Henshaw GG, Jacobsen E, Visser RGF (1996) Production of transgenic cassava plants by particle bombardment using luciferase activity as the selection marker. Mol Breed 2:339–349

    Article  CAS  Google Scholar 

  • Ramírez H, Hussain A, Roca W, Bushuk W (1987) Isozyme electrophoregrams of sixteen enzynes in five tissues of cassava (Manihot esculenta Crantz) varieties. Euphytica 36:39–48

    Article  Google Scholar 

  • Reilly K, Bernal D, Cortes DF, Gomez-Vasquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203

    Article  CAS  PubMed  Google Scholar 

  • Renvioze BS (1973) The area of origin of Manihot esculenta as a crop plant: a review of the evidence. Econ Bot 26:352–360

    Article  Google Scholar 

  • Restrepo S, Verdier V (1997) Geographical differentiation of the population of Xanthomonas axonopodis pv. manihotis in Colombia. Appl Environ Microbiol 63:4427–4434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roa AC, Maya MM, Duque MC, Tohme J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750

    Article  CAS  Google Scholar 

  • Roca WM (1984) Cassava. In: Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. Crop species. Macmillan, New York, pp 269–301

    Google Scholar 

  • Rogers DJ, Appan SG (1973) Manihot and Manihotoides (Euphorbiaceae), a computer-assisted study, Flora Neotropica, monograph, vol 13. Hafner Press, New York. 272 p

    Google Scholar 

  • Rojas-C M, Pérez JC, Ceballos H, Baena D, Morante N, Calle F (2009) Introduction of inbreeding and analysis of inbreeding depression in eight S1 cassava families. Crop Sci 49:543–548

    Article  Google Scholar 

  • RTB (2016) The CGIAR Research Program on Roots, Tubers and Bananas (RTB) 2016 Annual Report. www.cgiar-rtb-2016-annual-report

  • Sánchez T, Ceballos H, Dufour D et al (2014) Carotenoids and dry matter prediction by NIRS and hunter color in fresh cassava roots. Food Chem 151:444–451

    Article  PubMed  CAS  Google Scholar 

  • Sánchez T, Dufour D, Moreno JL, Pizarro M, Arango I, Domínquez M, Ceballos H (2013) Changes in extended shelf life of cassava roots during storage in ambient conditions. Postharvest Biol Technol 86:520–528

    Article  CAS  Google Scholar 

  • Sarria R, Torres E, Angel F, Chavarriaga P, Roca WM (2000) Transgenic plants of cassava (Manihot esculenta) with resistance to Basta obtained by Agrobacterium-mediated transformation. Plant Cell Rep 19:339–344

    Article  CAS  Google Scholar 

  • Sarria R, Torres E, Balcazar, M, Destafano-Beltran L, Roca WM (1995) Progress in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). In: Proceedings of the Second International Scientific Meeting Cassava Biotechnology Network (22–26 August 1994, Bogor, Indonesia) (Working document 150), CIAT, Cali. pp 241–244

    Google Scholar 

  • Sayre R, Beeching J, Cahoon E et al (2011) The BioCassava plus program: Biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272

    Article  CAS  PubMed  Google Scholar 

  • Schöpke C, Taylor NJ, Carcamo R, Konan NK, Marmey P, Henshaw GG, Beachy RN, Fauquet CM (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotech 14:731–735

    Article  Google Scholar 

  • Second G, Allem A, Emperaire L et al (1997) AFLP based Manihot and cassava numerical taxanomy and genetic structure analysis in progress: implications for dynamic conservation and genetic mapping. Afr J Root Tuber Crops 2:140–147

    Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  CAS  PubMed  Google Scholar 

  • Sofiari E, Raemakers CJJM, Bergervoet JEM, Jacobsen E, RGF V (1998) Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Rep 18:159–165

    Article  CAS  Google Scholar 

  • Sriroth K, Piyachomkwan K, Wanlapatit S, Nivitchanyong S (2010) The promise of a technology revolution in cassava bioethanol: from Thai practice to the world practice. Fuel 89:1333–1338

    Article  CAS  Google Scholar 

  • Ssemakula G, Dixon A (2007) Genotype x environment interaction, stability and agronomic performance of carotenoid-rich cassava clones. Sci Res Essay 2(9):390–399

    Google Scholar 

  • Stapleton G (2012) Global starch market outlook and competing starch raw materials for starches by product segment and region. Cassava Starch World 2010. Centre for Management Technology (CMT), Cambodia

    Google Scholar 

  • Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688

    Article  CAS  PubMed  Google Scholar 

  • Taylor N, Gaitán-Solís E, Moll T et al (2012) A high-throughput platform for the production and analysis of transgenic cassava (Manihot esculenta) plants. Trop Plant Biol 5:127–139

    Article  CAS  Google Scholar 

  • Taylor NJ, Masona MV, Carcamo R, Ho T, Schöpke C, Fauquet CM (2001) Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120:25–34

    Article  CAS  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • Tumuhimbise R, Shanahan P, Melis R, Kawuki R (2014) Genetic variation and association among factors influencing storage root bulking in cassava. J Agric Sci 153:1267–1280

    Article  Google Scholar 

  • Tuvesson S, Dayteg C, Hagberg P et al (2007) Molecular markers and doubled haploids in European plant breeding programs. Euphytica 158:305–312

    Article  CAS  Google Scholar 

  • Umanah EE, Hartmann CRW (1973) Chromosome numbers and karyotypes of some Manihot species. J Am Soc Hortic Sci 98(3):272–274

    Google Scholar 

  • van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E (2000) The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agr 80:1866–1873

    Article  Google Scholar 

  • Vanderschuren H, Moreno I, Anjanappa RB, Zainuddin IM, Gruissem W (2012) Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS One 7:e45277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderschuren H, Stupak M, Fütterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses––review and perspectives. Plant Biotechnol J 5:207–220

    Article  CAS  PubMed  Google Scholar 

  • Vlaar PWL, van Beek P, RGF V (2007) Genetic modification and its impact on industry structure and performance: post-harvest deterioration of cassava in Thailand. J Chain Netw Sci 7:133–142

    Article  Google Scholar 

  • Wang C, Lentini Z, Tabares E et al (2011) Microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz). Biol Plant 55(3):469–478

    Article  Google Scholar 

  • Wasswa P, Alicai T, Mukasa SB (2010) Optimisation of in vitro techniques for cassava brown streak virus elimination from infected cassava clones. Afr Crop Sci J 18:235–241

    Google Scholar 

  • Welsch R, Arango J, Bär C et al (2010) Provitamin a – accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Were WV, Shanahan P, Melis R, Omari OO (2012) Gene action controlling farmer preferred traits in cassava varieties adapted to mid-altitude tropical climatic conditions of western Kenya. Field Crop Res 133:113–118

    Article  Google Scholar 

  • Westwood NN (1990) Maintenance and storage: clonal germplasm. Plant Breed Rev 7:111–128

    Google Scholar 

  • Whankaew S, Poopear S, Kanjanawattanawong S, Tangphatsornruang S, Boonseng O, Lightfoot DA, Triwitayakorn K (2011) A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics 12:266. http://www.biomedcentral.com/1471-2164/12/266

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe MD, Egesi C, Kawuki R, Kulakow P, Rabbi IY, Jannink J-L (2016) Next generation cassava breeding: progress implementing genomic selection” in Proceedings of the World Congress on Root and Tuber Crops and Third Scientific Conference of the Global Cassava Partnership for the 21st Century (Nanning). Available online at: http://www.gcp21.org/wcrtc/PS08/

  • Wolfe MD, Rabbi IY, Egesi C et al (2016) Genomewide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9. doi:10.3835/plantgenome2015.11.0118

  • Wongtiem P, Courtois D, Florin B, Juchaux M, Peltier D, Broun P, Ducos JP (2011) Effects of cytokinins on secondary somatic embryogenesis of selected clone Rayong 9 of Manihot esculenta Crantz for ethanol production. Afr J Biotechnol 10:1600–1608

    CAS  Google Scholar 

  • Woodward B, Puonti-Kaerlas J (2001) Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica 120:1–6

    Article  Google Scholar 

  • Wright CE (1965) Field plans for a systematically designed polycross. Rec Agric Res 14:31–41

    Google Scholar 

  • Wydra K, Zinsou V, Jorge V, Verdier V (2004) Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava. Phytopathology 94:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yadav JS, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance to cassava brown streak Uganda virus in transgenic cassava. Mol Plant Pathol. doi:10.1111/j.1364-3703.2010.00700.x

  • Zacarias AM, Botha A-M, Labuschagne MT, Benesi IRM (2004) Characterization and genetic distance analysis of cassava (Manihot esculenta Crantz) germplasm from Mozambique using RAPD fingerprinting. Euphytica 138:49–53

    Article  CAS  Google Scholar 

  • Zacarias AM, Labuschagne MT (2010) Diallel analysis of cassava brown streak disease, yield and yield related characteristics in Mozambique. Euphytica 176:309–320

    Article  Google Scholar 

  • Zainuddin IM, Schlegel K, Gruissem W, Vanderschuren H (2012) Robust transformation procedure for the production of transgenic farmer-preferred cassava landraces. Plant Methods 8:24. http://www.plantmethods.com/content/8/1/24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zehntner L (1919) Estudo sobre algumas variedades de mandiocas Brasileiras. Sociedad Nacionale de Agricultura, Impresa Ingleza-Camerino 61, Rio de Janeiro

    Google Scholar 

  • Zhang P, Vanderschuren H, Fütterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3:385–397

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669

    CAS  PubMed  Google Scholar 

  • Zhao SS, Dufour D, Sánchez T, Ceballos H, Zhang P (2011) Development of waxy cassava with different biological and physico-chemical characteristics of starches for industrial applications. Biotechnol Bioeng. doi:10.1002/bit.23120

  • Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  PubMed  Google Scholar 

  • Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R (2012) Extending cassava root shelf life via reduction of reactive oxygen species production1[c][w][OA]. Plant Physiol 4:1396–1407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was undertaken as part of the CGIAR Research Program on Roots, Tubers and Banana (RTB) and HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH). It has also received financial support from the Bill and Melinda Gates Foundation and USAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan Ceballos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceballos, H., Hershey, C.H. (2017). Cassava (Manihot esculenta Crantz). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_5

Download citation

Publish with us

Policies and ethics