Skip to main content

Tropical Maize (Zea mays L.)

  • Chapter
  • First Online:
Genetic Improvement of Tropical Crops

Abstract

From its origins in Mexico, maize has spread throughout the cropping world and now has the largest annual production of any cereal crop. Maize adapted to the tropics has a shorter breeding history than its temperate equivalent, and maize yields in the tropics average 46% those of temperate regions. Diverse microclimates in its center of origin in Mexico resulted in a great diversity of landraces, and early improvement focused on identifying and compositing the most productive of these into genetically diverse populations that have subsequently formed the basis of modern inbred line extraction and pedigree breeding. The International Maize and Wheat Improvement Center (CIMMYT) has been the focus of much of this research for the past 50 years, and they, along with multinational seed companies, have been largely responsible for the major movements of elite tropical maize germplasm to Africa and Asia. Crop improvement has focused primarily on changing biomass partitioning by reducing plant height, increasing ear growth, reducing barrenness, and consistently focusing on increasing biotic and abiotic stress tolerances. Photoperiod sensitivity and tassel size, however, remain high and harvest index and tolerance to plant density low relative to temperate maize. Tropical maize breeding programs have shown genetic gains of around 100 kg/ha/year under optimal conditions, though less under abiotic stress. Genetic rates of gain have averaged 1–2% annually despite the high incidence of stresses in target environments, and today farm yields in tropical environments are increasing at the same rate (70–80 kg/ha/year) as in temperate production areas. Although open-pollinated varieties (OPVs) have been largely superseded by hybrids, there are niches in low-yielding environments or where commercial seed companies are dysfunctional where OPVs have a role. Tropical maize breeding programs should maintain their focus on yield stability in stressed environments, increased yield potential by further changes in plant morphology and partitioning, precise high-throughput phenotyping, and the systematic adoption of real-time marker-assisted selection (MAS). Considerable improvements in technologies that shorten the selection cycle have been made, e.g., the combination of doubled haploid inbred line production and MAS, especially genomic selection. Effective management of the deluge of genotypic and phenotypic data is a continuing priority. Impact will however only be achieved by increasing the rate of varietal turnover at the farm level so the challenges of global warming can be effectively met by the new generation of stress-tolerant maize cultivars. This can only come about through effective private-public partnerships in the seed sector and in a continued investment in well-trained motivated plant breeders and agronomists committed to quality fieldwork with the widest possible array of useful genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    QPM is quality protein maize, a grain type with elevated levels of lysine and tryptophan caused by the presence of the opaque-2 recessive gene, and improved for kernel hardness through the accumulation of modifier genes.

References

  • Abate T, Shiferaw B, Menkir A et al (2015) Factors that transformed maize productivity in Ethiopia. Food Secur 7:965–981

    Article  Google Scholar 

  • Abebe F, Tefera T, Mugo S et al (2009) Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Afr J Biotechnol 8:5937–5943

    Article  Google Scholar 

  • Almeida GD, Nair S, Borem A et al (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed. doi:10.1007/s11032-014-0068-5

  • Amusan IO, Rich PJ, Menkir A et al (2008) Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–166

    Article  PubMed  Google Scholar 

  • Araus JL, Cairns JE (2013) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. doi.org/10.1016/j.tplants.2013.09.008

  • Araus JL, Serret MD, Edmeades GO (2012) Phenotyping maize for adaptation to drought. Front Physiol. doi:10.3389/phys.2012.00305

  • Atlin GN, Palacios N, Babu R et al (2011) Quality protein maize: progress and prospects. Plant Breeding Rev 34:83–131

    Article  CAS  Google Scholar 

  • Badu-Apraku B (2010) Effects of recurrent selection for grain yield and Striga resistance in an extra-early maize population. Crop Sci 50:1735–1743

    Article  Google Scholar 

  • Badu-Apraku B, Fakorede MAB (2013) Breeding early and extra-early maize for resistance to biotic and abiotic stresses in sub-Saharan Africa. Plant Breed Rev 37:115–197

    Google Scholar 

  • Bänziger M, Cooper M (2001) Breeding for low input conditions and the consequences for participatory plant breeding: examples from tropical maize and wheat. Euphytica 122:503–519

    Article  Google Scholar 

  • Bänziger M, Lafitte HR (1997) Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci 37:1110–1117

    Article  Google Scholar 

  • Bänziger M, Lafitte HR, Edmeades GO (1995) Intergenotypic competition during evaluation of maize progenies under limited and adequate N supply. Field Crops Res 44:25–31

    Article  Google Scholar 

  • Bänziger M, Edmeades GO, Lafitte HR (1999) Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci 39:1035–1040

    Article  Google Scholar 

  • Bänziger M, Edmeades GO, Beck DL, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT, Mexico DF, 68 pp

    Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224

    Article  Google Scholar 

  • Barker TC, Campos H, Cooper M et al (2005) Improving drought tolerance in maize. Plant Breed Rev 25:173–253

    CAS  Google Scholar 

  • Beavis W (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. Proc 49th ASTA meetings. ASTA, Chicago, pp 250–266

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Betrán FJ, Beck D, Bänziger M, Edmeades GO (2003a) Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci 43:807–817

    Article  Google Scholar 

  • Beyene Y, Semagn K, Mugo S et al (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  • Beyene Y, Semagn K, Crossa J et al (2016) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56:1–10

    Article  CAS  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Bolaños J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crops Res 31:233–252

    Article  Google Scholar 

  • Bolaños J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80

    Article  Google Scholar 

  • Bolaños J, Edmeades GO, Martinez L (1993) Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought- adaptive physiological and morphological traits. Field Crop Res 31:269–286

    Article  Google Scholar 

  • Boyer JS, Byrne P, Cassman KG et al (2013) The U.S. drought of 2012 in perspective: a call to action. Glob Food Secur 2:139–143

    Article  Google Scholar 

  • Brewbaker JL (2009) Registration of nine tropical maize populations resistant to tropical diseases. J Plant Registration 3:10–13

    Article  Google Scholar 

  • Brookes G, Barfoot P (2015) GM crops: global socioeconomic and environmental impacts 1996–2013. PG Economics Ltd, Dorchester. (2015globalimpactstudyfinalMay2015%20(2).pdf)

    Google Scholar 

  • Brown J, Caligari P, Campos H (2014). Plant breeding, 2nd ed. Wiley Blackwell, Oxford

    Google Scholar 

  • Butruille DV, Birru FH, Boerboem ML et al (2015) Maize breeding in the United States: views from within Monsanto. Plant Breed Rev 39:199–282

    Google Scholar 

  • Byrne PF, Bolaños J, Edmeades GO, Eaton DL (1995) Gains from selection under drought versus multilocation testing in related tropical populations. Crop Sci 35:63–69

    Article  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH et al (2012) Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron 114:1–58

    Article  CAS  Google Scholar 

  • Cairns JE, Crossa J, Zaidi PH et al (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1–12

    Article  Google Scholar 

  • Campos H, Cooper M, Habben JE et al (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34

    Article  Google Scholar 

  • Campos H, Cooper M, Edmeades GO et al (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt. Maydica 51:369–381

    Google Scholar 

  • Cárcova J, Otegui ME (2007) Ovary growth and maize kernel set. Crop Sci 47:1104–1110

    Article  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaikam V, Nair SK, Babu R et al (2014) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171

    Article  PubMed  CAS  Google Scholar 

  • Chaikam V, Martinez L, Melchinger A et al (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56:1678–1688

    Article  CAS  Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci 39:1315–1324

    Article  Google Scholar 

  • Chavarriaga EM (1966) Maize ETO, una variedad producida en Colombia. Separata de la Revista ICA 1:5–30

    Google Scholar 

  • Cicchino M, Edreira JIR, Uribelarrea M, Otegui ME (2010) Heat stress in field-grown maize: response of physiological determinants of grain yield. Crop Sci 50:1438–1448

    Article  Google Scholar 

  • CIMMYT (2004) Maize diseases: a guide for field identification. CIMMYT, Mexico DF, 119pp

    Google Scholar 

  • Cooper M, Smith OS, Graham G et al (2004) Genomics, genetics and plant breeding: a private sector perspective. Crop Sci 44:1907–1913

    Article  Google Scholar 

  • Cooper M, Messina CD, Podlich D et al (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    Article  CAS  Google Scholar 

  • Corral JAR, Puga ND, Gonzalez JJS et al (2008) Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Sci 48:1502–1512

    Article  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR et al (2006) Plant breeding: past present and future. In: Lamkey KR, Lee M (eds) Plant breeding: The Arnel R Hallauer International Symposium. Blackwell, Iowa, pp 3–50

    Google Scholar 

  • Cross HZ (1975) Diallel analysis of direction and rate of grain filling of seven inbred lines of corn. Crop Sci 15:532–535

    Article  Google Scholar 

  • Crossa J, Taba S, Wellhausen EJ (1990) Heterotic patterns among Mexican races of maize. Crop Sci 30:1182–1190

    Article  Google Scholar 

  • De Groote H, Tongruksawattana S, Oloo F et al (2016) Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Prot 82:30–35

    Article  Google Scholar 

  • DeLeon N, Coors JG (2002) Twenty-four cycles of mass selection for prolificacy in the Golden Glow maize population. Crop Sci 42:325–333

    Article  Google Scholar 

  • Demissie G, Tefera T, Tadesse A (2008) Importance of husk covering on field infestation of maize by Sitophilus zeamais Motsch (Coleoptera: Curculionidae) at Bako, western Ethiopia. Afr J Biotechnol 7:3777–3782

    Google Scholar 

  • Dow EW, Daynard TB, Muldoon JF et al (1984) Resistance to drought and density stress in Canadian and European maize (Zea mays L.) hybrids. Can J Plant Sci 64:575–585

    Article  Google Scholar 

  • Duvick DN (1997) What is yield? In: Edmeades GO et al (eds) Developing drought- and low N-tolerant maize, Proceedings of a Symposium. CIMMYT, El Batan, pp 332–335

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.) Adv Agron 86:83–145

    Article  Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-Central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • Duvick DN, Smith JCS, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev 24:109–151

    Google Scholar 

  • Eagles HA, Lothrop JE (1994) Highland maize from Central Mexico – its origin, characteristics, and uses in breeding programs. Crop Sci 34:11–19

    Article  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163

    Article  Google Scholar 

  • Eberhart SA, Salhuana W, Sevilla R, Taba S (1995) Principles for tropical maize breeding. Maydica 40:339–355

    Google Scholar 

  • Echarte L, Andrade FH (2003) Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crops Res 82:1–12

    Article  Google Scholar 

  • Echarte L, Rothstein S, Tollenaar M (2008) The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci 48:656–665

    Article  CAS  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmeades GO (2008) Drought tolerance in maize: an emerging reality. In: James C (ed) Global status of commercialized biotech/GM crops: 2008, ISAAA Brief 39. ISAAA, Ithaca, pp 197–217

    Google Scholar 

  • Edmeades GO (2012) Progress in achieving and delivering drought tolerance in maize – an update. In: James C (ed) Global status of commercialized biotech/GM crops: 2012, ISAAA Brief 44. ISAAA, Ithaca, pp 239–272

    Google Scholar 

  • Edmeades GO, Ellis RH, Lafitte HR (1992) Photothermal responses of tropically-adapted maize. Agron Abstr 84:124

    Google Scholar 

  • Edmeades GO, Bolaños J, Hernandez M, Bello S (1993) Causes for silk delay in a lowland tropical maize population. Crop Sci 33:1029–1035

    Article  Google Scholar 

  • Edmeades GO, Chapman SC, Lafitte HR (1994) Photoperiod sensitivity of tropical maize cultivars is reduced by cool night temperatures. Paper presented at 86th annual meeting of the American Society of Agronomy, Seattle, November 13–18, 1994

    Google Scholar 

  • Edmeades GO, Bänziger M, Cortes M, Ortega A (1997) From stress-tolerant populations to hybrids: the role of source germplasm. In: Edmeades GO et al (eds) Developing drought and low N tolerant maize. CIMMYT, El Batan, pp 263–273

    Google Scholar 

  • Edmeades GO, Bolaños J, Chapman SC et al (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315

    Article  Google Scholar 

  • Edmeades GO, Bolaños J, Elings A et al (2000a) The role and regulation of the anthesis-silking interval in maize. In: Westgate ME, Boote KJ (eds) Physiology and modeling kernel set in maize, CSSA Special Publication No. 29. CSSA, Madison, pp 43–73

    Google Scholar 

  • Edmeades GO, Bänziger M, Ribaut JM (2000b) Maize improvement for drought-limited environments. In: Otegui ME, Slafer GA (eds) Physiological bases for maize improvement. Haworth, Binghampton

    Google Scholar 

  • Edreira JIR, Carpicia EB, Sammarro D, Otegui ME (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Res 123:62–73

    Article  Google Scholar 

  • Egli DB (2015) Is there a role for sink size in understanding maize population-yield relationships? Crop Sci 55:2453–2462

    Article  CAS  Google Scholar 

  • Ejeta G, Gressel J (eds) (2007) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, New Jersey

    Google Scholar 

  • Ellis RH, Summerfield RJ, Edmeades GO, Roberts EH (1992) Photoperiod, leaf number, and interval from tassel initiation to emergence in diverse cultivars of maize. Crop Sci 32:398–403

    Article  Google Scholar 

  • Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, London

    Google Scholar 

  • FAOSTAT (2016) http://faostat3.fao.org/home/E. Accessed 1 Feb 2016

  • Fischer KS, Palmer AFE (1984) Tropical maize. In: Goldsworthy PR, Fisher NM (eds) The physiology of tropical field crops. Wiley, Oxford, pp 213–247

    Google Scholar 

  • Fischer KS, Johnson EC, Edmeades GO (1987) Recurrent selection for reduced tassel branch number and reduced leaf area density above the ear in tropical maize populations. Crop Sci 27:1150–1156

    Article  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increases continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. PNAS 99:9573–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney J, Anderson F, Franks C et al (2016) Robust seed systems, emerging technologies, and hybrid crops for Africa. Glob Food Sec 9:36–44

    Article  Google Scholar 

  • Gannon B, Kaliwile C, Arscott SA et al (2014) Biofortified orange maize is as efficacious as vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr. doi:10.3945/ajcn.114.087379

  • Gerrish EE (1983) Indications from a diallel study for interracial maize hybridization in the Corn Belt. Crop Sci 23:1082–1084

    Article  Google Scholar 

  • Goldsworthy PR, Palmer AFE, Sperling DW (1974) Growth and yield of lowland tropical maize in Mexico. J Agric Sci 83:223–230

    Article  Google Scholar 

  • Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Wisconsin, pp 139–148

    Google Scholar 

  • Goodman MM, Brown WL (1988) Races of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. Crop Science Society of America, Wiaconsin, pp 33–79

    Google Scholar 

  • Gowda M, Das B, Makumbi D et al (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet. doi:10.1007/s00122-015-2559-0

  • Hallauer AR (1999) Temperate maize and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Wisconsin, pp 353–361

    Google Scholar 

  • Hallauer AR, Carena MJ (2012) Recurrent selection methods to improve germplasm in maize. Maydica 57:266–283

    Google Scholar 

  • Hallauer AR, Miranda Fo JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University, Ames

    Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH et al (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. PNAS 108:1088–1092

    Article  PubMed  Google Scholar 

  • Holland JB, Goodman MM, Castillo-Gonzalez F (1996) Identification of agronomically superior Latin American maize accessions via multistage evaluations. Crop Sci 36:778–784

    Article  Google Scholar 

  • J. C. Reif, M. L. Warburton, X. C. Xia, D. A. Hoisington, J. Crossa, S. Taba, J. Muminović, M. Bohn, M. Frisch, A. E. Melchinger, (2006) Grouping of accessions of Mexican races of maize revisited with SSR markers. Theoretical and Applied Genetics 113 (2):177–185

    Google Scholar 

  • James C (2015) Global status of commercialized biotech crops: 2015. ISAAA Brief No 51. ISAAA, Ithaca

    Google Scholar 

  • Jiang C, Edmeades GO, Armstead I et al (1999) Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet 99:1106–1119

    Article  CAS  Google Scholar 

  • Johnson EC, Fischer KS, Edmeades GO, Palmer AFE (1986) Recurrent selection for reduced plant height in lowland tropical maize. Crop Sci 26:253–260

    Article  Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13:51–59

    Article  Google Scholar 

  • Jong SK, Brewbaker JL, Lee CH (1982) Effects of solar radiation on the performance of maize in 41 successive monthly plantings in Hawaii. Crop Sci 22:13–18

    Article  Google Scholar 

  • Kanampiu F, Diallo A, Burnet M et al (2007) Success with the low biotech of seed-coated imidazolinone-resistant maize. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control. World Scientific, New Jersey, pp 145–158

    Chapter  Google Scholar 

  • Kebede AZ, Melchinger AE, Cairns JE et al (2013) Relationship of line per se and testcross performance for grain yield of tropical maize in drought and well-watered trials. Crop Sci 53:1228–1236

    Article  Google Scholar 

  • Kumar H (2002) Resistance in maize to the larger grain borer, Prostephanus truncatus (horn) (Coleoptera: Bostrichidae). J Stored Prod Res 38:267–280

    Article  Google Scholar 

  • Kurtz B, Gardner CAC, Millard MJ et al (2016) Global access to maize germplasm provided by the US national plant germplasm system and by US plant breeders. Crop Sci 56:931–941

    Article  CAS  Google Scholar 

  • Lafitte HR, Edmeades GO (1994) Improvement for tolerance to low soil nitrogen in tropical maize II. Grain yield, biomass production, and N accumulation. Field Crops Res 39:15–25

    Article  Google Scholar 

  • Lafitte HR, Edmeades GO, Taba S (1997) Adaptive strategies identified among tropical maize landraces for nitrogen-limited environments. Field Crops Res 49:187–204

    Article  Google Scholar 

  • Lambert RJ, Mansfield BD, Mumm RH (2014) Effect of leaf area on maize productivity. Maydica 59:58–64

    Google Scholar 

  • Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Madison, pp 31–48

    Google Scholar 

  • Lane JA, Child DV, Moore THM et al (1997) Phenotypic characterization of resistance in Zea diploperennis to Striga. Maydica 42:45–51

    Google Scholar 

  • Langyintuo AS, Mwangi W, Diallo AO et al (2010) Challenges of the maize seed industry in eastern and southern Africa: a compelling case for private-public intervention to promote growth. Food Policy 35:323–331

    Article  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011a) Nonlinear heat effects on African maize as evidenced by historical maize yields. Nat Clim Chang 1:42–45. doi:10.1038/NCLIMATE1043

    Article  Google Scholar 

  • Löffler CM, Wei J, Fast T et al (2005) Classification of maize environments using crop simulation and geographic information systems. Crop Sci 45:1708–1716

    Article  Google Scholar 

  • Louette D, Smale M (2000) Farmers’ seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:25–41

    Google Scholar 

  • Lu Y, Hao Z, Xie C, Crossa J, Araus J-L, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res 124(1):37–45

    Article  Google Scholar 

  • MacRobert JF (2009) Seed business management in Africa. CIMMYT, Harare Zimbabwe

    Google Scholar 

  • Mahuku G, Lockhart BE, Wanjala B et al (2015) Maize Lethal Necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956–965

    Google Scholar 

  • Makumbi D, Betran J, Bänziger M, Ribaut J-M (2011) Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143–162

    Article  Google Scholar 

  • Makumbi D, Diallo A, Kanampiu F et al (2015) Agronomic performance and genotype x environment interaction of herbicide-resistant maize varieties in East Africa. Crop Sci 55:540–555

    Article  Google Scholar 

  • Masuka B, Araus JL, Das B, Sonder K, Cairns JE (2012) Phenotyping for abiotic stress tolerance in maize. F J Integr Plant Biol 54(4):238–249

    Article  CAS  Google Scholar 

  • Masuka B, Atlin GN, Olsen M et al (2017a) Gains in maize genetic improvement in eastern and southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci 57:1–12. doi: 10.2135/cropsci2016.05.0343

  • Masuka B, Magorokosho C, Olsen M et al (2017b) Gains in maize genetic improvement in eastern and southern Africa: II CIMMYT open-pollinated variety breeding pipeline. Crop Sci 57. doi: 10.2135/cropsci2016.05.0408

  • Mathenge MK, Smale M, Olwande J (2014) The impacts of hybrid maize seed on the welfare of farming households in Kenya. Food Policy 44:262–271

    Article  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. PNAS 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann J (2005) Maize and grace- Africa’s encounter with a new world crop, 1500–2000. First Harvard University Press, Massachusetts, 289p

    Book  Google Scholar 

  • Melchinger AE, Brauner PC, Böhm J, Schipprack W (2016) In vivo haploid induction in maize: comparison of different testing regimes for measuring haploid induction rates. Crop Sci 56:1127–1135

    Article  CAS  Google Scholar 

  • Mihm JA (ed) (1997) Insect resistant maize: recent advances and utilization. CIMMYT, Mexico DF

    Google Scholar 

  • Mir C, Zerjal T, Combes V et al (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682. doi:10.1007/s00122-013-2164-z

    Article  CAS  PubMed  Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Article  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris ML, Bellon MR (2004) Participatory plant breeding research: opportunities and challenges for the international crop improvement system. Euphytica 136:21–35

    Article  Google Scholar 

  • Motto M, Moll RH (1983) Prolificacy in maize: a review. Maydica 28:53–76

    Google Scholar 

  • Muchow RC, Sinclair TR, Bennett JM (1990) Temperature and solar radiation effects on potential maize yields across locations. Agron J 82:338–343

    Article  Google Scholar 

  • Nair S, Babu R, Magorokosho C et al (2015) Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Ortega AC (1987) Insect pests of maize: a guide for field identification. CIMMYT, Mexico DF, 106pp

    Google Scholar 

  • Pandey S, Vasal SK, Deutsch JA (1991) Performance of open-pollinated maize cultivars selected from 10 tropical maize populations. Crop Sci 31:285–290

    Article  Google Scholar 

  • Pandey S, Gardner CO (1992) Recurrent selection for population, variety, and hybrid improvement in tropical maize. Adv Agron 48:1–87

    Article  Google Scholar 

  • Pandey S, Narro LA, Friesen DK, Waddington SR (2007) Breeding maize for tolerance to soil acidity. Plant Breed Rev. 28:59–100

    CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Mitchell RAC et al (2003) Manipulation of rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index, and water use of wheat. J Aust Inst Agric Sci 43:117–120

    Google Scholar 

  • Paterniani E (1990) Maize breeding in the tropics. Crit Rev Plant Sci 9:125–144

    Article  Google Scholar 

  • Pingali P (ed) (2001) CIMMYT 1999/2000 world maize facts and trends, Meeting world maize needs: technological opportunities and priorities for the public sector. CIMMYT, Mexico DF

    Google Scholar 

  • Pixley KV (2006) Hybrid and open-pollinated varieties in modern agriculture. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer International Symposium. Blackwell, Iowa, pp 234–250

    Google Scholar 

  • Prasanna BM (2013) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:1–13

    Google Scholar 

  • Prasanna BM (2016) Maize lethal necrosis (MLN) in eastern Africa: an update on R4D efforts led by CIMMYT. The African Seed (issue #2, march 2016), pp. 18–21

    Google Scholar 

  • Prasanna BM, Babu R, Nair S et al (2014) Molecular breeding for tropical maize improvement. In: Wusirika R, Bohn M, Lai J, Kole C (eds) Genetics, genomics and breeding of maize. Science Publishers/CRC Press, Boca Raton, pp 89–118

    Google Scholar 

  • Prigge V, Sanchez C, Dhillon B et al (2011) Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506

    Article  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC et al (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Reif JC, Xia XC, Melchinger AE et al (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Reif JC, Warburton ML, Xia XC, Hoisington DA, Crossa J, Taba S, Muminović J, Bohn M, Frisch M, Melchinger AE (2006) Grouping of accessions of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • van Rensberg JBJ (2007) First report of field resistance by the stem borer Busseola fusca (fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151

    Article  Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355

    Google Scholar 

  • Salvucci M (2008) Association of rubisco activase with chaperonin-60β: a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and on-going gene loss. PNAS 108:4069–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoper JB, Lambert RJ, Vasilas BL (1987) Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci 27:27–31

    Article  Google Scholar 

  • Semagn K, Beyene Y, Babu R et al (2014) Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-Saharan Africa. Crop Sci 55:1–11

    Google Scholar 

  • Serratos JAH (2009) The origin and diversity of maize in the American continent. Greenpeace (eds) (http://www.greenpeace.org/mexico/PageFiles/44856/el-origen-y-la-diversidad-del-2.pdf)

  • Stevenson JC, Goodman MM (1972) Ecology of exotic races of maize. I. Leaf number and tillering of 16 races under four temperatures and two photoperiods. Crop Sci 12:864–868

    Article  Google Scholar 

  • Teixeira JEC, Weldikidan T, de Leon N et al (2015) Hallauer’s Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize. Heredity 114:229–240

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thornton PK, Jones PG, Ericksen PJ, Challinor AJ (2011) Agriculture and food systems in sub-Saharan Africa in a 4°C+ world. Phil Trans R Soc A 369:117–136

    Article  PubMed  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance. Field Crops Res 75:161–169

    Article  Google Scholar 

  • Tollenaar M, Lee EA (2011) Strategies for enhancing grain yield in maize. Plant Breed Rev 34:38–82

    Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1587–1604

    Article  Google Scholar 

  • Tollenaar M, Ahmadzadeh A, Lee EA (2004) Physiological basis of heterosis for grain yield in maize. Crop Sci 44:2086–2094

    Article  Google Scholar 

  • Trachsel S, Levya M, Lopez M (2016) Identification of tropical maize germplasm with tolerance to drought, nitrogen deficiency, and combined heat and drought stresses. Crop Sci 56:3031–3045. doi:10.2135/cropsci2016.03.0182

    Article  Google Scholar 

  • Tracy WF, Chandler MA (2006) The historical and biological basis of the concept of heterotic patterns in Corn Belt dent maize. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer International Symposium. Blackwell, Iowa, pp 219–233

    Google Scholar 

  • Uhr DV, Goodman MM (1995) Temperate maize inbreds derived from tropical germplasm: II. Inbred yield trials. Crop Sci 35:785–790

    Article  Google Scholar 

  • Uribelarrea M, Cárcova J, Borras L, Otegui ME (2008) Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crop Res 105:172–181

    Article  Google Scholar 

  • Vasal SK, Srinivasan G, Gonzalez F et al (1992) Heterosis and combining ability of tropical x subtropical maize germplasm. Crop Sci 32:1483–1489

    Article  Google Scholar 

  • Vasal SK, Cordova H, Pandey S, Srinivasan G (1999) Tropical maize and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Wisconsin, pp 363–373

    Google Scholar 

  • Vergara-Díaz O, Zaman-Allah MA, Masuka B, Hornero A, Zarco-Tejada P, Prasanna BM, Cairns JE, Araus JL (2016) A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front Plant Sci 7:666

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivek BS, Odongo O, Njuguna J et al (2010) Diallel analysis of grain yield and resistance to seven diseases of 12 African maize (Zea mays L) inbred lines. Euphytica 172:329–340

    Article  Google Scholar 

  • Wangai AM, Redinbaugh MG, Kinyua ZM et al (2012) First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis 96:1582

    Article  Google Scholar 

  • Warburton ML, Xia X, Crossa J et al (2002) Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Warburton ML, Reif JC, Frisch M et al (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48:617–624

    Article  Google Scholar 

  • Warburton ML, Wilkes G, Taba S et al (2011) Gene flow among different teosinte taxa and into the domesticated maize gene pool. Genet Res Crop Evol 58:1243–1261

    Article  Google Scholar 

  • Weber VS, Melchinger AE, Magorokosho C et al (2012) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in southern Africa. Crop Sci 52:1011–1020

    Article  Google Scholar 

  • Wellhausen EJ, Roberts LM, Hernandez E, Mangelsdorf PC (1952) Races of maize in Mexico: their origin, characteristics and distribution. The Bussey Institute, Harvard University, Cambridge, MA, 223 p

    Google Scholar 

  • Westgate ME, Bassetti P (1990) Heat and drought stress in corn: what really happens to the corn plant at pollination? In: Wilkinson D (ed) Proc 45th Annual Corn and Sorghum Res. Conf. ASTA, Washington, DC, pp 12–28

    Google Scholar 

  • Wilkes G (2004) Corn, strange and marvelous: but is a definitive answer known? In: Smith CW, Betrán J, Runge ECA (eds) Corn – origin, history, technology and production. Willey, New Jersey, pp 3–63

    Google Scholar 

  • Windhausen VS, Wagener S, Magorokosho C et al (2012) Strategies to subdivide a target population of environments: results from the CIMMYT-led maize hybrid testing programs in Africa. Crop Sci 52:2143–2152

    Article  Google Scholar 

  • Witcombe J, Virk DS, Goyal SN et al (2006) Participatory plant breeding: a market oriented cost-effective approach. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R Hallauer international symposium. Blackwell, Oxford, pp 107–119

    Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS et al (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol. dx.doi.org/10.1371/journal.pbio.10000409

  • Worku M, Zelleke H (2007) Advances in improving harvest index and grain yield of maize in Ethiopia. East Afr J Sci 1:112–119

    Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Zaidi PH, Srinivasan G, Sanchez C (2003a) Morpho-physiological traits associated with variable field performance of different types maize germplasm across multiple environments. Maydica 48:207–220

    Google Scholar 

  • Zaidi PH, Srinivasan G, Sanchez C (2003b) Relationship between line per se and cross performance under low N fertility in tropical maize (Zea mays L). Maydica 48:221–231

    Google Scholar 

  • Zaidi PH, Singh NN (2005) Stresses on maize in tropics. Directorate of Maize Research, New Delhi, p 500

    Google Scholar 

  • Zaidi PH, Yadav M, Maniselvan P et al (2010a) Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.) Maydica 55:201–208

    Google Scholar 

  • Zaidi PH, Maniselvan P, Srivastava A et al (2010b) Genetic analysis of water-logging tolerance in tropical maize (Zea mays L.) Maydica 55:17–26

    Google Scholar 

  • Zaidi PH, Vinayan MT, Blummel M (2013) Genetic variability of tropical maize stover quality and the potential for genetic improvement of food-feed value in India. Field Crop Res 153:94–101

    Article  Google Scholar 

  • Zaman-Allah M, Vergara O, Araus JL et al (2015) Unmanned aerial platform-based multispectral imaging for field phenotyping of maize. Plant Methods 11. doi:10.1186/s13007-015-0078-2

  • Zaman-Allah M, Zaidi PH, Trachsel S et al (2016) Phenotyping for abiotic stress tolerance in maize – drought stress, A field manual. CIMMYT, Mexico

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory O. Edmeades .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edmeades, G.O., Trevisan, W., Prasanna, B.M., Campos, H. (2017). Tropical Maize (Zea mays L.). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_3

Download citation

Publish with us

Policies and ethics