Grüning M (1926) Die Tragfähigkeit statisch unbestimmter Tragwerke aus Stahl bei beliebig häufig wiederholter Belastung. Springer
Google Scholar
Bleich H (1932) Über die Bemessung statisch unbestimmter Stahltragwerke unter Berücksichtigung des elastisch-plastischen Verhaltens des Baustoffes. Bauingenieur 19(20):261–266
MATH
Google Scholar
Melan E (1938) Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veraenderlicker Belastung. Sitzber Akad Wiss 147:73–78
MATH
Google Scholar
Melan E (1938) Zur Plastizität des räumlicken Kontinuums. Ing Arch 8:116–126
CrossRef
MATH
Google Scholar
Weichert D, Ponter A (2014) A historical view on shakedown theory. In: The History of theoretical, material and computational mechanics-mathematics meets mechanics and engineering. Springer, pp 169–193
Google Scholar
Simoens B, Lefebvre M, Nickell R, Minami F (2012) Experimental demonstration of shakedown in a vessel submitted to impulsive loading. J Press Vessel Technol 134:1–6
Google Scholar
Ponter A, Hearle A, Johnson K (1985) Application of the kinematical shakedown theorem to rolling and sliding point contacts. J Mech Phys Solids 33(4):339–362
MathSciNet
CrossRef
MATH
Google Scholar
Begley MR, Evans AG (2001) Progressive cracking of a multilayer system upon thermal cycling. J Appl Mech 68(4):513–520
CrossRef
MATH
Google Scholar
Tao M, Mohammad LN, Nazzal MD, Zhang Z, Wu Z (2010) Application of shakedown theory in characterizing traditional and recycled pavement base materials. J Transp Eng 136(3):214–222
CrossRef
Google Scholar
García-Rojo R, Herrmann HJ (2005) Shakedown of unbound granular material. Granular Matter 7(2–3):109–118
CrossRef
MATH
Google Scholar
Sun H, Pathak A, Luntz J, Brei D, Alexander PW, Johnson NL (2008) Stabilizing shape memory alloy actuator performance through cyclic shakedown: An empirical study. In: The 15th international symposium on: smart structures and materials and nondestructive evaluation and health monitoring. International Society for Optics and Photonics, p 69300
Google Scholar
Peigney M (2014) On shakedown of shape memory alloys structures. Ann Solid Struct Mech 6(1–2):17–28
CrossRef
Google Scholar
Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: part II–subcomponent isothermal responses. Int J Solids Struct 50(20–21):3027–3044
CrossRef
Google Scholar
Bree J (1967) Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J Strain Anal Eng Des 2(3):226–238
CrossRef
Google Scholar
ASME Boiler and Pressure Vessel Code (2003) ASME, New York
Google Scholar
BS 5500: British standard specification for fusion welded pressure vessels (1996) British Standards Institute, London
Google Scholar
R5 Assessment procedure for the high temperature response of structures (1990) Nuclear Electric PLC
Google Scholar
Abdel-Karim M, Ohno N (2000) Kinematic hardening model suitable for ratchetting with steady-state. Int J Plast 16(3–4):225–240
CrossRef
MATH
Google Scholar
Koiter WT (1960) General theorems for elastic-plastic solids. North-Holland Amsterdam
Google Scholar
König J (1987) Shakedown of elastic-plastic structures. Elsevier, The Netherlands
MATH
Google Scholar
Bower A (2009) Applied mechanics of solids. CRC Press
Google Scholar
Abdalla HF, Megahed MM, Younan MYA (2007) A simplified technique for shakedown limit load determination. Nucl Eng Des 237:1231–1240
CrossRef
Google Scholar
Abdalla HF, Megahed MM, Younan MYA (2009) Comparison of pipe bend ratchetting/shakedown test results with the shakedown boundary determined via a simplified technique. In: Proceedings of the ASME 2009 pressure vessels and piping division conference PVP2009, pp 659–666
Google Scholar
Abdalla HF, Younan MYA, Megahed MM (2011) Shakedown limit load determination for a kinematically hardening 90\(^{\circ }\) pipe bend subjected to steady internal pressures and cyclic bending moments. J Press Vessel Technol 133:051212–1–10
Google Scholar
Korba A, Megahed MM, Abdalla HF, Nassar MM (2013) Shakedown analysis of 90-degree mitred pipe bends. Eur J Mech-A/Solids 40:158–165
MathSciNet
CrossRef
Google Scholar
Elsaadany MS, Younan MY, Abdalla HF (2014) Determination of shakedown boundary and failure-assessment-diagrams of cracked pipe bends. J Press Vessel Technol 136(1):011209
CrossRef
Google Scholar
Abdalla HF (2014) Elastic shakedown boundary determination of a cylindrical vessel-nozzle intersection subjected to steady internal pressures and cyclic out-of-plane bending moments. Nucl Eng Des 267:189–196
CrossRef
Google Scholar
Oda AA, Megahed MM, Abdalla HF (2015) Effect of local wall thinning on shakedown regimes of pressurized elbows subjected to cyclic in-plane and out-of-plane bending. Int J Press Vessels Pip 134:11–24
CrossRef
Google Scholar
Abdalla HF (2014) Shakedown limit load determination of a cylindrical vessel-nozzle intersection subjected to steady internal pressures and cyclic in-plane bending moments. J Press Vessel Technol 136(5):051602
CrossRef
Google Scholar
Abdalla HF (2014) Shakedown boundary determination of a 90\(^{\circ }\) back-to-back pipe bend subjected to steady internal pressures and cyclic in-plane bending moments. Int J Press Vessels Pip 116:1–9
CrossRef
Google Scholar
Hafiz YA, Younan MY, Abdalla HF (2015) A proposal for a simplified assessment procedure to api-579 standard. J Press Vessel Technol 137(3):031007
CrossRef
Google Scholar
Symonds PS (1951) Shakedown in continuous media. J Appl Mech-Trans ASME 18(1):85–89
MathSciNet
MATH
Google Scholar
Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112–131
MathSciNet
CrossRef
MATH
Google Scholar
Weichert D (1984) Shakedown at finite displacements; a note on Melan’s theorem. Mech Res Commun 11(2):121–127
CrossRef
MATH
Google Scholar
Spiliopoulos KV (1997) On the automation of the force method in the optimal plastic design of frames. Comput Methods Appl Mech Eng 141(1):141–156
CrossRef
MATH
Google Scholar
Maier G (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element, linear programming approach. Meccanica 4(3):250–260
CrossRef
MATH
Google Scholar
Bodovillé G, de Saxcé G (2001) Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach. Eur J Mech-A/Solids 20(1):99–112
CrossRef
MATH
Google Scholar
Garcea G, Leonetti L (2013) Decomposition methods and strain driven algorithms for limit and shakedown analysis. In: Limit state of materials and structures. Springer, pp 19–43
Google Scholar
Ponter AR, Engelhardt M (2000) Shakedown limits for a general yield condition: implementation and application for a von mises yield condition. Eur J Mech-A/Solids 19(3):423–445
CrossRef
MATH
Google Scholar
Ponter A, Chen H (2001) A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit. Eur J Mech-A/Solids 20:539–553
MathSciNet
CrossRef
MATH
Google Scholar
Stein E, Zhang G, König JA (1992) Shakedown with nonlinear strain-hardening including structural computation using finite element method. Int J Plast 8(1):1–31
CrossRef
MATH
Google Scholar
Vu D, Staat M, Tran I (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23:213–225
CrossRef
MATH
Google Scholar
Simon JW, Weichert D (2013) Interior-point method for lower bound shakedown analysis of von Mises-type materials. In: Limit state of materials and structures. Springer, pp 103–128
Google Scholar
Wiechmann K, Stein E (2006) Shape optimization for elasto-plastic deformation under shakedown conditions. Int J Solids Struct 43(22):7145–7165
CrossRef
MATH
Google Scholar
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393
MathSciNet
CrossRef
MATH
Google Scholar
Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246
MathSciNet
CrossRef
MATH
Google Scholar
Bendsoe M, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer
Google Scholar
Kammoun Z, Smaoui H (2015) A direct method formulation for topology plastic design of continua. In: Direct Methods for Limit and Shakedown Analysis of Structures. Springer, pp 47–63
Google Scholar
Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus Mécanique 342(9):520–531
CrossRef
Google Scholar