Skip to main content

Some Graphical Interpretations of Melan’s Theorem for Shakedown Design

Abstract

Bree Interaction Diagrams have long been one of the major visual design guides for employing and evaluating shakedown in engineering applications. These diagrams provide representations of the realms in which elastoplastic behaviors, including shakedown, are found for a material and structure under variable loads. The creation of these diagrams often relies upon some combination of upper or lower bound shakedown theorems and numerical shakedown limit determination techniques. Part of the utility of these diagrams is that, for a given structure and loading conditions, inspecting them is sufficient to determine whether shakedown will occur or not. The diagrams cannot however, give the designer insight into how the conditions for shakedown are met. This chapter presents some graphical interpretations of one of the common methods for shakedown determination: the use of Melan’s Lower Bound Theorem. The intent is to provide additional insight for designers regarding how shakedown conditions are satisfied. In this way, additional directions for modifying designs to recover shakedown behavior may also be identified. Revisiting this well-established theorem from a graphical and pedagogical approach, also provides a foundation for interdisciplinary innovation. The particular focus is on simple examples that highlight ways in which Melan’s theorem may be applied to shakedown design problems.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59810-9_11
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-59810-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Grüning M (1926) Die Tragfähigkeit statisch unbestimmter Tragwerke aus Stahl bei beliebig häufig wiederholter Belastung. Springer

    Google Scholar 

  2. Bleich H (1932) Über die Bemessung statisch unbestimmter Stahltragwerke unter Berücksichtigung des elastisch-plastischen Verhaltens des Baustoffes. Bauingenieur 19(20):261–266

    MATH  Google Scholar 

  3. Melan E (1938) Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veraenderlicker Belastung. Sitzber Akad Wiss 147:73–78

    MATH  Google Scholar 

  4. Melan E (1938) Zur Plastizität des räumlicken Kontinuums. Ing Arch 8:116–126

    CrossRef  MATH  Google Scholar 

  5. Weichert D, Ponter A (2014) A historical view on shakedown theory. In: The History of theoretical, material and computational mechanics-mathematics meets mechanics and engineering. Springer, pp 169–193

    Google Scholar 

  6. Simoens B, Lefebvre M, Nickell R, Minami F (2012) Experimental demonstration of shakedown in a vessel submitted to impulsive loading. J Press Vessel Technol 134:1–6

    Google Scholar 

  7. Ponter A, Hearle A, Johnson K (1985) Application of the kinematical shakedown theorem to rolling and sliding point contacts. J Mech Phys Solids 33(4):339–362

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Begley MR, Evans AG (2001) Progressive cracking of a multilayer system upon thermal cycling. J Appl Mech 68(4):513–520

    CrossRef  MATH  Google Scholar 

  9. Tao M, Mohammad LN, Nazzal MD, Zhang Z, Wu Z (2010) Application of shakedown theory in characterizing traditional and recycled pavement base materials. J Transp Eng 136(3):214–222

    CrossRef  Google Scholar 

  10. García-Rojo R, Herrmann HJ (2005) Shakedown of unbound granular material. Granular Matter 7(2–3):109–118

    CrossRef  MATH  Google Scholar 

  11. Sun H, Pathak A, Luntz J, Brei D, Alexander PW, Johnson NL (2008) Stabilizing shape memory alloy actuator performance through cyclic shakedown: An empirical study. In: The 15th international symposium on: smart structures and materials and nondestructive evaluation and health monitoring. International Society for Optics and Photonics, p 69300

    Google Scholar 

  12. Peigney M (2014) On shakedown of shape memory alloys structures. Ann Solid Struct Mech 6(1–2):17–28

    CrossRef  Google Scholar 

  13. Reedlunn B, Daly S, Shaw J (2013) Superelastic shape memory alloy cables: part II–subcomponent isothermal responses. Int J Solids Struct 50(20–21):3027–3044

    CrossRef  Google Scholar 

  14. Bree J (1967) Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J Strain Anal Eng Des 2(3):226–238

    CrossRef  Google Scholar 

  15. ASME Boiler and Pressure Vessel Code (2003) ASME, New York

    Google Scholar 

  16. BS 5500: British standard specification for fusion welded pressure vessels (1996) British Standards Institute, London

    Google Scholar 

  17. R5 Assessment procedure for the high temperature response of structures (1990) Nuclear Electric PLC

    Google Scholar 

  18. Abdel-Karim M, Ohno N (2000) Kinematic hardening model suitable for ratchetting with steady-state. Int J Plast 16(3–4):225–240

    CrossRef  MATH  Google Scholar 

  19. Koiter WT (1960) General theorems for elastic-plastic solids. North-Holland Amsterdam

    Google Scholar 

  20. König J (1987) Shakedown of elastic-plastic structures. Elsevier, The Netherlands

    MATH  Google Scholar 

  21. Bower A (2009) Applied mechanics of solids. CRC Press

    Google Scholar 

  22. Abdalla HF, Megahed MM, Younan MYA (2007) A simplified technique for shakedown limit load determination. Nucl Eng Des 237:1231–1240

    CrossRef  Google Scholar 

  23. Abdalla HF, Megahed MM, Younan MYA (2009) Comparison of pipe bend ratchetting/shakedown test results with the shakedown boundary determined via a simplified technique. In: Proceedings of the ASME 2009 pressure vessels and piping division conference PVP2009, pp 659–666

    Google Scholar 

  24. Abdalla HF, Younan MYA, Megahed MM (2011) Shakedown limit load determination for a kinematically hardening 90\(^{\circ }\) pipe bend subjected to steady internal pressures and cyclic bending moments. J Press Vessel Technol 133:051212–1–10

    Google Scholar 

  25. Korba A, Megahed MM, Abdalla HF, Nassar MM (2013) Shakedown analysis of 90-degree mitred pipe bends. Eur J Mech-A/Solids 40:158–165

    MathSciNet  CrossRef  Google Scholar 

  26. Elsaadany MS, Younan MY, Abdalla HF (2014) Determination of shakedown boundary and failure-assessment-diagrams of cracked pipe bends. J Press Vessel Technol 136(1):011209

    CrossRef  Google Scholar 

  27. Abdalla HF (2014) Elastic shakedown boundary determination of a cylindrical vessel-nozzle intersection subjected to steady internal pressures and cyclic out-of-plane bending moments. Nucl Eng Des 267:189–196

    CrossRef  Google Scholar 

  28. Oda AA, Megahed MM, Abdalla HF (2015) Effect of local wall thinning on shakedown regimes of pressurized elbows subjected to cyclic in-plane and out-of-plane bending. Int J Press Vessels Pip 134:11–24

    CrossRef  Google Scholar 

  29. Abdalla HF (2014) Shakedown limit load determination of a cylindrical vessel-nozzle intersection subjected to steady internal pressures and cyclic in-plane bending moments. J Press Vessel Technol 136(5):051602

    CrossRef  Google Scholar 

  30. Abdalla HF (2014) Shakedown boundary determination of a 90\(^{\circ }\) back-to-back pipe bend subjected to steady internal pressures and cyclic in-plane bending moments. Int J Press Vessels Pip 116:1–9

    CrossRef  Google Scholar 

  31. Hafiz YA, Younan MY, Abdalla HF (2015) A proposal for a simplified assessment procedure to api-579 standard. J Press Vessel Technol 137(3):031007

    CrossRef  Google Scholar 

  32. Symonds PS (1951) Shakedown in continuous media. J Appl Mech-Trans ASME 18(1):85–89

    MathSciNet  MATH  Google Scholar 

  33. Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112–131

    MathSciNet  CrossRef  MATH  Google Scholar 

  34. Weichert D (1984) Shakedown at finite displacements; a note on Melan’s theorem. Mech Res Commun 11(2):121–127

    CrossRef  MATH  Google Scholar 

  35. Spiliopoulos KV (1997) On the automation of the force method in the optimal plastic design of frames. Comput Methods Appl Mech Eng 141(1):141–156

    CrossRef  MATH  Google Scholar 

  36. Maier G (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element, linear programming approach. Meccanica 4(3):250–260

    CrossRef  MATH  Google Scholar 

  37. Bodovillé G, de Saxcé G (2001) Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach. Eur J Mech-A/Solids 20(1):99–112

    CrossRef  MATH  Google Scholar 

  38. Garcea G, Leonetti L (2013) Decomposition methods and strain driven algorithms for limit and shakedown analysis. In: Limit state of materials and structures. Springer, pp 19–43

    Google Scholar 

  39. Ponter AR, Engelhardt M (2000) Shakedown limits for a general yield condition: implementation and application for a von mises yield condition. Eur J Mech-A/Solids 19(3):423–445

    CrossRef  MATH  Google Scholar 

  40. Ponter A, Chen H (2001) A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit. Eur J Mech-A/Solids 20:539–553

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Stein E, Zhang G, König JA (1992) Shakedown with nonlinear strain-hardening including structural computation using finite element method. Int J Plast 8(1):1–31

    CrossRef  MATH  Google Scholar 

  42. Vu D, Staat M, Tran I (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23:213–225

    CrossRef  MATH  Google Scholar 

  43. Simon JW, Weichert D (2013) Interior-point method for lower bound shakedown analysis of von Mises-type materials. In: Limit state of materials and structures. Springer, pp 103–128

    Google Scholar 

  44. Wiechmann K, Stein E (2006) Shape optimization for elasto-plastic deformation under shakedown conditions. Int J Solids Struct 43(22):7145–7165

    CrossRef  MATH  Google Scholar 

  45. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  CrossRef  MATH  Google Scholar 

  46. Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    MathSciNet  CrossRef  MATH  Google Scholar 

  47. Bendsoe M, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer

    Google Scholar 

  48. Kammoun Z, Smaoui H (2015) A direct method formulation for topology plastic design of continua. In: Direct Methods for Limit and Shakedown Analysis of Structures. Springer, pp 47–63

    Google Scholar 

  49. Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus Mécanique 342(9):520–531

    CrossRef  Google Scholar 

Download references

Acknowledgements

Dr. Vermaak would like to acknowledge that, in part, this material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0438. The authors would also like to thank Dr. Hany Fayek Abdalla for helpful discussions about the technique in Abdalla et al. [22].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vermaak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vermaak, N., Boissier, M., Valdevit, L., McMeeking, R.M. (2018). Some Graphical Interpretations of Melan’s Theorem for Shakedown Design. In: Barrera, O., Cocks, A., Ponter, A. (eds) Advances in Direct Methods for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-59810-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59810-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59808-6

  • Online ISBN: 978-3-319-59810-9

  • eBook Packages: EngineeringEngineering (R0)