Skip to main content

DNA and Histone Modifications in Cancer Diagnosis

  • Chapter
  • First Online:
  • 1243 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A number of epigenetic alterations occur during carcinogenesis, and inactivation of tumor suppressor genes is a major determinant of cancer development. Hypermethylation of tumor suppressor genes, histone modification, DNA methylation are major epigenetic alteration in cancers. These alterations may cause a change in gene expression in cells as well as in secretory factors, which include proteins and nucleic acid. Aberrant miRNA expression associated with promoter methylation has been found in body fluids such as plasma and serum, and liquid biopsy can therefore be used to identify significant biomarkers in the early detection of cancer. In addition, telomeres are a key regulator of chromosome stability in cancer. Epigenetic modification by histone methylation is associated with the maintenance of telomere length. This maintenance is essential for cancer to maintain an immortal phenotype. Telomeric repeat-containing RNA (TERRA) is also a regulator of epigenetic modification. In this review, we describe recent advances in our understanding of epigenetic regulation in cancers, including DNA and histone modifications, as well as regulation by non-coding RNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. doi:10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  2. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83(2):155–158

    Article  CAS  PubMed  Google Scholar 

  3. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP (1991) Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 48(5):880–888

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646. doi:10.1038/323643a0

    Article  CAS  PubMed  Google Scholar 

  5. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  PubMed  PubMed Central  Google Scholar 

  6. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS (1983) Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219(4587):973–975

    Article  CAS  PubMed  Google Scholar 

  7. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T (1993) CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8(4):1063–1067

    CAS  PubMed  Google Scholar 

  8. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, Jones PA (1995) Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res 55(20):4531–4535

    CAS  PubMed  Google Scholar 

  9. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1(7):686–692

    Article  CAS  PubMed  Google Scholar 

  10. Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177

    CAS  PubMed  Google Scholar 

  11. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85(1):27–37

    Article  CAS  PubMed  Google Scholar 

  12. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  13. West RW, Barrett JC (1993) Inactivation of a tumor suppressor function in immortal Syrian hamster cells by N-methyl-N′-nitro-N-nitrosoguanidine and by 5-aza-2′-deoxycytidine. Carcinogenesis 14(2):285–289

    Article  CAS  PubMed  Google Scholar 

  14. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556. doi:10.1038/416552a

    Article  CAS  PubMed  Google Scholar 

  15. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33(1):61–65. doi:10.1038/ng1068

    Article  CAS  PubMed  Google Scholar 

  16. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  17. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242. doi:10.1038/ng1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB (2012) A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22(5):837–849. doi:10.1101/gr.131169.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62(22):6456–6461

    CAS  PubMed  Google Scholar 

  20. Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95

    Article  CAS  PubMed  Google Scholar 

  21. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21(5):525–530. doi:10.1101/gad.415507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23(10):1171–1176. doi:10.1101/gad.510809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M, Maertens G, Banck M, Zhou MM, Walsh MJ, Peters G, Gil J (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23(10):1177–1182. doi:10.1101/gad.511109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236. doi:10.1038/ng1950

    Article  CAS  PubMed  Google Scholar 

  25. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13(10):679–692. doi:10.1038/nrg3270

    Article  CAS  PubMed  Google Scholar 

  26. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:10.1056/NEJMra072067

    Article  CAS  PubMed  Google Scholar 

  27. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61(8):3225–3229

    CAS  PubMed  Google Scholar 

  28. Ushijima T, Asada K (2010) Aberrant DNA methylation in contrast with mutations. Cancer Sci 101(2):300–305. doi:10.1111/j.1349-7006.2009.01434.x

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, Levin B, Juhl H, Arber N, Moinova H, Durkee K, Schmidt K, He Y, Diehl F, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW, Markowitz SD, Vogelstein B (2009) Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 27(9):858–863. doi:10.1038/nbt.1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ned RM, Melillo S, Marrone M (2011) Fecal DNA testing for colorectal cancer screening: the ColoSure test. PLoS Curr 3:RRN1220. doi:10.1371/currents.RRN1220

    PubMed  PubMed Central  Google Scholar 

  31. Dominguez G, Carballido J, Silva J, Silva JM, Garcia JM, Menendez J, Provencio M, Espana P, Bonilla F (2002) p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin Cancer Res 8(4):980–985

    CAS  PubMed  Google Scholar 

  32. Valenzuela MT, Galisteo R, Zuluaga A, Villalobos M, Nunez MI, Oliver FJ, Ruiz de Almodovar JM (2002) Assessing the use of p16(INK4a) promoter gene methylation in serum for detection of bladder cancer. Eur Urol 42 (6):622–628; discussion 628-630

    Google Scholar 

  33. Chan MW, Chan LW, Tang NL, Tong JH, Lo KW, Lee TL, Cheung HY, Wong WS, Chan PS, Lai FM, To KF (2002) Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 8(2):464–470

    CAS  PubMed  Google Scholar 

  34. Silva JM, Dominguez G, Garcia JM, Gonzalez R, Villanueva MJ, Navarro F, Provencio M, San Martin S, Espana P, Bonilla F (1999) Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 59(13):3251–3256

    CAS  PubMed  Google Scholar 

  35. Silva JM, Dominguez G, Villanueva MJ, Gonzalez R, Garcia JM, Corbacho C, Provencio M, Espana P, Bonilla F (1999) Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 80(8):1262–1264. doi:10.1038/sj.bjc.6690495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fiegl H, Millinger S, Mueller-Holzner E, Marth C, Ensinger C, Berger A, Klocker H, Goebel G, Widschwendter M (2005) Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 65(4):1141–1145. doi:10.1158/0008-5472.CAN-04-2438

    Article  CAS  PubMed  Google Scholar 

  37. Rykova EY, Laktionov PP, Skvortsova TE, Starikov AV, Kuznetsova NP, Vlassov VV (2004) Extracellular DNA in breast cancer: cell-surface-bound, tumor-derived extracellular DNA in blood of patients with breast cancer and nonmalignant tumors. Ann N Y Acad Sci 1022:217–220. doi:10.1196/annals.1318.033

    Article  CAS  PubMed  Google Scholar 

  38. Sharma G, Mirza S, Parshad R, Srivastava A, Datta Gupta S, Pandya P, Ralhan R (2010) CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem 43(4–5):373–379. doi:10.1016/j.clinbiochem.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  39. Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, Pandya P, Ralhan R (2010) Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci 87(3–4):83–91. doi:10.1016/j.lfs.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  40. Skvortsova TE, Rykova EY, Tamkovich SN, Bryzgunova OE, Starikov AV, Kuznetsova NP, Vlassov VV, Laktionov PP (2006) Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer 94(10):1492–1495. doi:10.1038/sj.bjc.6603117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357(9265):1335–1336

    Article  CAS  PubMed  Google Scholar 

  42. Ren CC, Miao XH, Yang B, Zhao L, Sun R, Song WQ (2006) Methylation status of the fragile histidine triad and E-cadherin genes in plasma of cervical cancer patients. Int J Gynecol Cancer 16(5):1862–1867. doi:10.1111/j.1525-1438.2006.00669.x

    Article  CAS  PubMed  Google Scholar 

  43. Widschwendter A, Muller HM, Fiegl H, Ivarsson L, Wiedemair A, Muller-Holzner E, Goebel G, Marth C, Widschwendter M (2004) DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res 10(2):565–571

    Article  CAS  PubMed  Google Scholar 

  44. deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grutzmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55(7):1337–1346. doi:10.1373/clinchem.2008.115808

  45. Grutzmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, Miehlke S, Stolz T, Model F, Roblick UJ, Bruch HP, Koch R, Liebenberg V, Devos T, Song X, Day RH, Sledziewski AZ, Lofton-Day C (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3(11):e3759. doi:10.1371/journal.pone.0003759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lecomte T, Berger A, Zinzindohoue F, Micard S, Landi B, Blons H, Beaune P, Cugnenc PH, Laurent-Puig P (2002) Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100(5):542–548. doi:10.1002/ijc.10526

    Article  CAS  PubMed  Google Scholar 

  47. Zou HZ, Yu BM, Wang ZW, Sun JY, Cang H, Gao F, Li DH, Zhao R, Feng GG, Yi J (2002) Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin Cancer Res 8(1):188–191

    PubMed  Google Scholar 

  48. Nakayama H, Hibi K, Taguchi M, Takase T, Yamazaki T, Kasai Y, Ito K, Akiyama S, Nakao A (2002) Molecular detection of p16 promoter methylation in the serum of colorectal cancer patients. Cancer Lett 188(1–2):115–119

    Article  CAS  PubMed  Google Scholar 

  49. He Q, Chen HY, Bai EQ, Luo YX, Fu RJ, He YS, Jiang J, Wang HQ (2010) Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet Cytogenet 202(1):1–10. doi:10.1016/j.cancergencyto.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  50. Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD (2001) Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res 61(3):900–902

    CAS  PubMed  Google Scholar 

  51. Chan KC, Lai PB, Mok TS, Chan HL, Ding C, Yeung SW, Lo YM (2008) Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin Chem 54(9):1528–1536. doi:10.1373/clinchem.2008.104653

    Article  CAS  PubMed  Google Scholar 

  52. Wong IH, Lo YM, Yeo W, Lau WY, Johnson PJ (2000) Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients. Clin Cancer Res 6(9):3516–3521

    CAS  PubMed  Google Scholar 

  53. Wang J, Qin Y, Li B, Sun Z, Yang B (2006) Detection of aberrant promoter methylation of GSTP1 in the tumor and serum of Chinese human primary hepatocellular carcinoma patients. Clin Biochem 39(4):344–348. doi:10.1016/j.clinbiochem.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  54. Wong IH, Lo YM, Zhang J, Liew CT, Ng MH, Wong N, Lai PB, Lau WY, Hjelm NM, Johnson PJ (1999) Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 59(1):71–73

    CAS  PubMed  Google Scholar 

  55. An Q, Liu Y, Gao Y, Huang J, Fong X, Li L, Zhang D, Cheng S (2002) Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett 188(1–2):109–114

    Article  CAS  PubMed  Google Scholar 

  56. Bearzatto A, Conte D, Frattini M, Zaffaroni N, Andriani F, Balestra D, Tavecchio L, Daidone MG, Sozzi G (2002) p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin Cancer Res 8(12):3782–3787

    CAS  PubMed  Google Scholar 

  57. Ng CS, Zhang J, Wan S, Lee TW, Arifi AA, Mok T, Lo DY, Yim AP (2002) Tumor p16M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol 79(2):101–106

    Article  PubMed  Google Scholar 

  58. Kurakawa E, Shimamoto T, Utsumi K, Hirano T, Kato H, Ohyashiki K (2001) Hypermethylation of p16(INK4a) and p15(INK4b) genes in non-small cell lung cancer. Int J Oncol 19(2):277–281

    CAS  PubMed  Google Scholar 

  59. Liu Y, An Q, Li L, Zhang D, Huang J, Feng X, Cheng S, Gao Y (2003) Hypermethylation of p16INK4a in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis 24(12):1897–1901. doi:10.1093/carcin/bgg169

    Article  CAS  PubMed  Google Scholar 

  60. Ramirez JL, Rosell R, Taron M, Sanchez-Ronco M, Alberola V, de Las PR, Sanchez JM, Moran T, Camps C, Massuti B, Sanchez JJ, Salazar F, Catot S, Spanish Lung Cancer G (2005) 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: the Spanish Lung Cancer Group. J Clin Oncol 23(36):9105–9112. doi:10.1200/JCO.2005.02.2905

    Article  CAS  PubMed  Google Scholar 

  61. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59(1):67–70

    CAS  PubMed  Google Scholar 

  62. Usadel H, Brabender J, Danenberg KD, Jeronimo C, Harden S, Engles J, Danenberg PV, Yang S, Sidransky D (2002) Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 62(2):371–375

    CAS  PubMed  Google Scholar 

  63. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 95(20):11891–11896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M (2000) Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol 18(18):3221–3229. doi:10.1200/JCO.2000.18.18.3221

    Article  CAS  PubMed  Google Scholar 

  65. Ahrendt SA, Chow JT, Xu LH, Yang SC, Eisenberger CF, Esteller M, Herman JG, Wu L, Decker PA, Jen J, Sidransky D (1999) Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 91(4):332–339

    Article  CAS  PubMed  Google Scholar 

  66. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60(21):5954–5958

    CAS  PubMed  Google Scholar 

  67. Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62(8):2370–2377

    CAS  PubMed  Google Scholar 

  68. Deligezer U, Yaman F, Erten N, Dalay N (2003) Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin Chim Acta 335(1–2):89–94

    Article  CAS  PubMed  Google Scholar 

  69. Koyanagi K, Mori T, O'Day SJ, Martinez SR, Wang HJ, Hoon DS (2006) Association of circulating tumor cells with serum tumor-related methylated DNA in peripheral blood of melanoma patients. Cancer Res 66(12):6111–6117. doi:10.1158/0008-5472.CAN-05-4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mori T, O'Day SJ, Umetani N, Martinez SR, Kitago M, Koyanagi K, Kuo C, Takeshima TL, Milford R, Wang HJ, Vu VD, Nguyen SL, Hoon DS (2005) Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J Clin Oncol 23(36):9351–9358. doi:10.1200/JCO.2005.02.9876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melnikov A, Scholtens D, Godwin A, Levenson V (2009) Differential methylation profile of ovarian cancer in tissues and plasma. J Mol Diagn 11(1):60–65. doi:10.2353/jmoldx.2009.080072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Muller HM, Millinger S, Fiegl H, Goebel G, Ivarsson L, Widschwendter A, Muller-Holzner E, Marth C, Widschwendter M (2004) Analysis of methylated genes in peritoneal fluids of ovarian cancer patients: a new prognostic tool. Clin Chem 50(11):2171–2173. doi:10.1373/clinchem.2004.034090

    Article  PubMed  CAS  Google Scholar 

  73. Liggett T, Melnikov A, Yi QL, Replogle C, Brand R, Kaul K, Talamonti M, Abrams RA, Levenson V (2010) Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 116(7):1674–1680. doi:10.1002/cncr.24893

    Article  CAS  PubMed  Google Scholar 

  74. Melnikov AA, Scholtens D, Talamonti MS, Bentrem DJ, Levenson VV (2009) Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J Surg Oncol 99(2):119–122. doi:10.1002/jso.21208

    Article  PubMed  Google Scholar 

  75. Bryzgunova OE, Morozkin ES, Yarmoschuk SV, Vlassov VV, Laktionov PP (2008) Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann N Y Acad Sci 1137:222–225. doi:10.1196/annals.1448.039

    Article  CAS  PubMed  Google Scholar 

  76. Jeronimo C, Usadel H, Henrique R, Silva C, Oliveira J, Lopes C, Sidransky D (2002) Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 60(6):1131–1135

    Article  PubMed  Google Scholar 

  77. Goessl C, Muller M, Heicappell R, Krause H, Miller K (2001) DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann N Y Acad Sci 945:51–58

    Article  CAS  PubMed  Google Scholar 

  78. Goessl C, Krause H, Muller M, Heicappell R, Schrader M, Sachsinger J, Miller K (2000) Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 60(21):5941–5945

    CAS  PubMed  Google Scholar 

  79. Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, Eisenberger MA, Partin AW, Nelson WG (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11(11):4037–4043. doi:10.1158/1078-0432.CCR-04-2446

    Article  CAS  PubMed  Google Scholar 

  80. Sunami E, Shinozaki M, Higano CS, Wollman R, Dorff TB, Tucker SJ, Martinez SR, Mizuno R, Singer FR, Hoon DS (2009) Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55(3):559–567. doi:10.1373/clinchem.2008.108498

    Article  CAS  PubMed  Google Scholar 

  81. Roupret M, Hupertan V, Catto JW, Yates DR, Rehman I, Proctor LM, Phillips J, Meuth M, Cussenot O, Hamdy FC (2008) Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer 122(4):952–956. doi:10.1002/ijc.23196

    Article  CAS  PubMed  Google Scholar 

  82. Suh CI, Shanafelt T, May DJ, Shroyer KR, Bobak JB, Crawford ED, Miller GJ, Markham N, Glode LM (2000) Comparison of telomerase activity and GSTP1 promoter methylation in ejaculate as potential screening tests for prostate cancer. Mol Cell Probes 14(4):211–217. doi:10.1006/mcpr.2000.0307

    Article  CAS  PubMed  Google Scholar 

  83. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7(9):2727–2730

    CAS  PubMed  Google Scholar 

  84. Goessl C, Muller M, Heicappell R, Krause H, Straub B, Schrader M, Miller K (2001) DNA-based detection of prostate cancer in urine after prostatic massage. Urology 58(3):335–338

    Article  CAS  PubMed  Google Scholar 

  85. Goessl C, Muller M, Heicappell R, Krause H, Schostak M, Straub B, Miller K (2002) Methylation-specific PCR for detection of neoplastic DNA in biopsy washings. J Pathol 196(3):331–334. doi:10.1002/path.1063

    Article  CAS  PubMed  Google Scholar 

  86. Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92(22):1805–1811

    Article  CAS  PubMed  Google Scholar 

  87. Hibi K, Taguchi M, Nakayama H, Takase T, Kasai Y, Ito K, Akiyama S, Nakao A (2001) Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res 7(10):3135–3138

    CAS  PubMed  Google Scholar 

  88. Sanchez-Cespedes M, Esteller M, Wu L, Nawroz-Danish H, Yoo GH, Koch WM, Jen J, Herman JG, Sidransky D (2000) Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 60(4):892–895

    CAS  PubMed  Google Scholar 

  89. Wong TS, Chang HW, Tang KC, Wei WI, Kwong DL, Sham JS, Yuen AP, Kwong YL (2002) High frequency of promoter hypermethylation of the death-associated protein-kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res 8(2):433–437

    CAS  PubMed  Google Scholar 

  90. Rosas SL, Koch W, da Costa Carvalho MG, Wu L, Califano J, Westra W, Jen J, Sidransky D (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61(3):939–942

    CAS  PubMed  Google Scholar 

  91. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437. doi:10.1038/nrc3066

    Article  CAS  PubMed  Google Scholar 

  92. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484. doi:10.1038/nrclinonc.2013.110

    Article  CAS  PubMed  Google Scholar 

  93. Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. Comptes rendus des seances de la Societe de biologie et de ses filiales 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  94. Sorenson GD, Pribish DM, Valone FH, Memoli VA, Bzik DJ, Yao SL (1994) Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cospo Am Soc Prev Onco 3(1):67–71

    CAS  Google Scholar 

  95. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86(4):774–779

    Article  CAS  PubMed  Google Scholar 

  96. Kopreski MS, Benko FA, Kwak LW, Gocke CD (1999) Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res 5(8):1961–1965

    CAS  PubMed  Google Scholar 

  97. Lo KW, Lo YM, Leung SF, Tsang YS, Chan LY, Johnson PJ, Hjelm NM, Lee JC, Huang DP (1999) Analysis of cell-free Epstein-Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem 45(8 Pt 1):1292–1294

    CAS  PubMed  Google Scholar 

  98. Sabbioni S, Miotto E, Veronese A, Sattin E, Gramantieri L, Bolondi L, Calin GA, Gafa R, Lanza G, Carli G, Ferrazzi E, Feo C, Liboni A, Gullini S, Negrini M (2003) Multigene methylation analysis of gastrointestinal tumors: TPEF emerges as a frequent tumor-specific aberrantly methylated marker that can be detected in peripheral blood. Mol Diagn J Devo Underst Hum Dis Clin Appl Mol Biol 7(3–4):201–207

    Google Scholar 

  99. Fujiwara K, Fujimoto N, Tabata M, Nishii K, Matsuo K, Hotta K, Kozuki T, Aoe M, Kiura K, Ueoka H, Tanimoto M (2005) Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 11(3):1219–1225

    CAS  PubMed  Google Scholar 

  100. Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, Chan SL, Chan WC, Hui DS, Ng SS, Chan HL, Wong CS, Ma BB, Chan AT, Lai PB, Sun H, Chiu RW, Lo YM (2013) Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 110(47):18761–18768. doi:10.1073/pnas.1313995110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fernandez AF, Rosales C, Lopez-Nieva P, Grana O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A, Fraga MF, Pino I, Javierre B, Carmona FJ, Acquadro F, Steenbergen RD, Snijders PJ, Meijer CJ, Pineau P, Dejean A, Lloveras B, Capella G, Quer J, Buti M, Esteban JI, Allende H, Rodriguez-Frias F, Castellsague X, Minarovits J, Ponce J, Capello D, Gaidano G, Cigudosa JC, Gomez-Lopez G, Pisano DG, Valencia A, Piris MA, Bosch FX, Cahir-McFarland E, Kieff E, Esteller M (2009) The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res 19(3):438–451. doi:10.1101/gr.083550.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Szyf M, Eliasson L, Mann V, Klein G, Razin A (1985) Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proc Natl Acad Sci U S A 82(23):8090–8094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sudo M, Chong JM, Sakuma K, Ushiku T, Uozaki H, Nagai H, Funata N, Matsumoto Y, Fukayama M (2004) Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 109(2):194–199. doi:10.1002/ijc.11701

    Article  CAS  PubMed  Google Scholar 

  104. Sakuma K, Chong JM, Sudo M, Ushiku T, Inoue Y, Shibahara J, Uozaki H, Nagai H, Fukayama M (2004) High-density methylation of p14ARF and p16INK4A in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 112(2):273–278. doi:10.1002/ijc.20420

    Article  CAS  PubMed  Google Scholar 

  105. Osawa T, Chong JM, Sudo M, Sakuma K, Uozaki H, Shibahara J, Nagai H, Funata N, Fukayama M (2002) Reduced expression and promoter methylation of p16 gene in Epstein-Barr virus-associated gastric carcinoma. Jpn J Cancer Res Gann 93(11):1195–1200

    Article  CAS  PubMed  Google Scholar 

  106. Doxaki C, Kampranis SC, Tsatsanis C (2015) Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J Immunol 195(12):5750–5761. doi:10.4049/jimmunol.1500615

    Article  CAS  PubMed  Google Scholar 

  107. Li CL, Nie H, Wang M, Su LP, Li JF, Yu YY, Yan M, Qu QL, Zhu ZG, Liu BY (2012) microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep 27(6):1960–1966. doi:10.3892/or.2012.1719

    PubMed  Google Scholar 

  108. Schliesser MG, Claus R, Hielscher T, Grimm C, Weichenhan D, Blaes J, Wiestler B, Hau P, Schramm J, Sahm F, Weiss EK, Weiler M, Baer C, Schmidt-Graf F, Schackert G, Westphal M, Hertenstein A, Roth P, Galldiks N, Hartmann C, Pietsch T, Felsberg J, Reifenberger G, Sabel MC, Winkler F, von Deimling A, Meisner C, Vajkoczy P, Platten M, Weller M, Plass C, Wick W (2016) Prognostic relevance of miRNA-155 methylation in anaplastic glioma. Oncotarget 7(50):82028–82045. doi:10.18632/oncotarget.13452

    PubMed  PubMed Central  Google Scholar 

  109. Yin Q, Wang X, Roberts C, Flemington EK, Lasky JA (2016) Methylation status and AP1 elements are involved in EBV-mediated miR-155 expression in EBV positive lymphoma cells. Virology 494:158–167. doi:10.1016/j.virol.2016.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang G, Esteve PO, Chin HG, Terragni J, Dai N, Correa IR Jr, Pradhan S (2015) Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation. Nucleic Acids Res 43(12):6112–6124. doi:10.1093/nar/gkv518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, Ikuo M, Ghosh AK, Lerner S, Rassenti LZ, Xiao L, Hu J, Reuben JM, Calin S, You MJ, Manning JT, Wierda WG, Estrov Z, O'Brien S, Kipps TJ, Keating MJ, Kay NE, Calin GA (2013) Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122(11):1891–1899. doi:10.1182/blood-2013-01-478222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tinzl M, Marberger M, Horvath S, Chypre C (2004) DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol 46(2):182–186. doi:10.1016/j.eururo.2004.06.004. discussion 187

    Article  CAS  PubMed  Google Scholar 

  113. Hasselmann DO, Rappl G, Tilgen W, Reinhold U (2001) Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 47(8):1488–1489

    CAS  PubMed  Google Scholar 

  114. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  115. Deligezer U, Akisik EZ, Akisik EE, Kovancilar M, Bugra D, Erten N, Holdenrieder S, Dalay N (2011) H3K9me3/H4K20me3 ratio in circulating nucleosomes as potential biomarker for colorectal cancer. In: Gahan P (ed) Circulating nucleic acids in plasma and serum, 1st edn. Springer, Heidelberg, pp 97–103. doi:10.1007/978-90-481-9382-0_14

    Google Scholar 

  116. Leszinski G, Gezer U, Siegele B, Stoetzer O, Holdenrieder S (2012) Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Res 32(5):2199–2205

    CAS  PubMed  Google Scholar 

  117. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  118. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. doi:10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  119. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13. doi:10.1186/gb-2004-5-3-r13

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  121. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488. doi:10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  122. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. doi:10.1038/nature09783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  124. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4. doi:10.7554/eLife.05005

  125. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128. doi:10.1038/nature07299

    Article  CAS  PubMed  Google Scholar 

  126. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672. doi:10.1073/pnas.0703820104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529. doi:10.1073/pnas.242606799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:10.1038/nature03552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033. doi:10.1158/0008-5472.CAN-05-0137

    Article  CAS  PubMed  Google Scholar 

  130. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756. doi:10.1158/0008-5472.CAN-04-0637

    Article  CAS  PubMed  Google Scholar 

  131. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215. doi:10.1038/nm.2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53. doi:10.1016/j.canlet.2008.09.035

    Article  CAS  PubMed  Google Scholar 

  133. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477. doi:10.1073/pnas.0707351104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752. doi:10.1016/j.molcel.2007.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang Y, Wang M, Wei W, Han D, Chen X, Hu Q, Yu T, Liu N, You Y, Zhang J (2016) Disruption of the EZH2/miRNA/beta-catenin signaling suppresses aerobic glycolysis in glioma. Oncotarget 7(31):49450–49458. doi:10.18632/oncotarget.10370

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ayala-Ortega E, Arzate-Mejia R, Perez-Molina R, Gonzalez-Buendia E, Meier K, Guerrero G, Recillas-Targa F (2016) Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer 16:226. doi:10.1186/s12885-016-2273-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, Kang C, Zhang Q (2015) DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett 359(2):198–205. doi:10.1016/j.canlet.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  138. Chiou GY, Chien CS, Wang ML, Chen MT, Yang YP, Yu YL, Chien Y, Chang YC, Shen CC, Chio CC, Lu KH, Ma HI, Chen KH, Liu DM, Miller SA, Chen YW, Huang PI, Shih YH, Hung MC, Chiou SH (2013) Epigenetic regulation of the miR142-3p/interleukin-6 circuit in glioblastoma. Mol Cell 52(5):693–706. doi:10.1016/j.molcel.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  139. Bourguignon LY, Wong G, Shiina M (2016) Up-regulation of histone methyltransferase, DOT1L, by matrix hyaluronan promotes MicroRNA-10 expression leading to tumor cell invasion and chemoresistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 291(20):10571–10585. doi:10.1074/jbc.M115.700021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68(7):2094–2105. doi:10.1158/0008-5472.CAN-07-5194

    Article  CAS  PubMed  Google Scholar 

  141. Langevin SM, Stone RA, Bunker CH, Lyons-Weiler MA, LaFramboise WA, Kelly L, Seethala RR, Grandis JR, Sobol RW, Taioli E (2011) MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 117(7):1454–1462. doi:10.1002/cncr.25689

    Article  CAS  PubMed  Google Scholar 

  142. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z, Yu J, Maher CA, Varambally S, Chinnaiyan AM (2011) Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20(2):187–199. doi:10.1016/j.ccr.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, Beringer G, Brikbak NJ, Yuan X, Cantley LC, Richardson AL, Pandolfi PP (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154(2):311–324. doi:10.1016/j.cell.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zou F, Li J, Jie X, Peng X, Fan R, Wang M, Wang J, Liu Z, Li H, Deng H, Yang X, Luo D (2016) Rs3842530 polymorphism in MicroRNA-205 host gene in lung and breast cancer patients. Med Sci Monit 22:4555–5464. doi:10.12659/MSM.901042

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cisneros-Soberanis F, Andonegui MA, Herrera LA (2016) miR-125b-1 is repressed by histone modifications in breast cancer cell lines. Spring 5(1):959. doi:10.1186/s40064-016-2475-z

    Article  CAS  Google Scholar 

  146. Poli E, Zhang J, Nwachukwu C, Zheng Y, Adedokun B, Olopade OI, Han YJ (2015) Molecular subtype-specific expression of MicroRNA-29c in breast cancer is associated with CpG dinucleotide methylation of the promoter. PLoS One 10(11):e0142224. doi:10.1371/journal.pone.0142224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, Kroll Y, Boldin M, Taganov K, Groner B, Richardson AL, Frank DA (2014) STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kappaB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal 7(310):ra11. doi:10.1126/scisignal.2004497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Augoff K, McCue B, Plow EF, Sossey-Alaoui K (2012) miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer 11(5). doi:10.1186/1476-4598-11-5

  149. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, Chan TA, Comen E, Andrade VP, Kim SW, King TA, Hudis CA, Norton L, Hicks J, Massague J, Tavazoie SF (2011) MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 25(3):226–231. doi:10.1101/gad.1974211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Watanabe K, Amano Y, Ishikawa R, Sunohara M, Kage H, Ichinose J, Sano A, Nakajima J, Fukayama M, Yatomi Y, Nagase T, Ohishi N, Takai D (2015) Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer. Cancer Med 4(10):1573–1582. doi:10.1002/cam4.505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Seol HS, Akiyama Y, Shimada S, Lee HJ, Kim TI, Chun SM, Singh SR, Jang SJ (2014) Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett 353(2):232–241. doi:10.1016/j.canlet.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  152. Chen DQ, Pan BZ, Huang JY, Zhang K, Cui SY, De W, Wang R, Chen LB (2014) HDAC 1/4-mediated silencing of microRNA-200b promotes chemoresistance in human lung adenocarcinoma cells. Oncotarget 5(10):3333–3349. doi:10.18632/oncotarget.1948

    Article  PubMed  PubMed Central  Google Scholar 

  153. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423. doi:10.1158/0008-5472.CAN-06-4074

    Article  CAS  PubMed  Google Scholar 

  154. Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu S, Fan H (2014) Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep 41(9):5693–5700. doi:10.1007/s11033-014-3439-4

    Article  CAS  PubMed  Google Scholar 

  155. Wang S, Lv C, Jin H, Xu M, Kang M, Chu H, Tong N, Wu D, Zhu H, Gong W, Zhao Q, Tao G, Zhou J, Zhang Z, Wang M (2014) A common genetic variation in the promoter of miR-107 is associated with gastric adenocarcinoma susceptibility and survival. Mutat Res 769:35–41. doi:10.1016/j.mrfmmm.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  156. An J, Pan Y, Yan Z, Li W, Cui J, Yuan J, Tian L, Xing R, Lu Y (2013) MiR-23a in amplified 19p13.13 loci targets metallothionein 2A and promotes growth in gastric cancer cells. J Cell Biochem 114(9):2160–2169. doi:10.1002/jcb.24565

    Article  CAS  PubMed  Google Scholar 

  157. Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, Fang WL, Lin WC (2010) Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 49(11):969–980. doi:10.1002/gcc.20804

    Article  CAS  PubMed  Google Scholar 

  158. Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y (2010) Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 31(5):777–784. doi:10.1093/carcin/bgq013

    Article  CAS  PubMed  Google Scholar 

  159. Huang D, Wang XB, Zhuang CB, Shi WH, Liu M, Tu QM, Zhang DT, Hu LH (2016) Reciprocal negative feedback loop between EZH2 and miR-101-1 contributes to miR-101 deregulation in hepatocellular carcinoma. Oncol Rep 35(2):1083–1090. doi:10.3892/or.2015.4467

    Article  CAS  PubMed  Google Scholar 

  160. Long XR, He Y, Huang C, Li J (2014) MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in hepatocellular carcinogenesis. Int J Oncol 44(6):1915–1922. doi:10.3892/ijo.2014.2373

    Article  CAS  PubMed  Google Scholar 

  161. He Y, Cui Y, Wang W, Gu J, Guo S, Ma K, Luo X (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9):841–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang SY, Hao J, Xie F, Hu XG, Liu C, Tong J, Zhou JD, Wu JC, Shao CH (2011) Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32(8):1183–1189. doi:10.1093/carcin/bgr105

    Article  CAS  PubMed  Google Scholar 

  163. Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, Luo J, Chen Z, Meng Z, Liu L (2014) Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33(4):514–524. doi:10.1038/onc.2012.598

    Article  CAS  PubMed  Google Scholar 

  164. Gao W, Gu Y, Li Z, Cai H, Peng Q, Tu M, Kondo Y, Shinjo K, Zhu Y, Zhang J, Sekido Y, Han B, Qian Z, Miao Y (2015) miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 34(13):1629–1640. doi:10.1038/onc.2014.101

    Article  CAS  PubMed  Google Scholar 

  165. Li J, Wu H, Li W, Yin L, Guo S, Xu X, Ouyang Y, Zhao Z, Liu S, Tian Y, Tian Z, Ju J, Ni B, Wang H (2016) Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappa B signaling. Oncogene 35(42):5501–5514. doi:10.1038/onc.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125(11):2737–2743. doi:10.1002/ijc.24638

    Article  CAS  PubMed  Google Scholar 

  167. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132. doi:10.1158/0008-5472.Can-08-0325

    Article  CAS  PubMed  Google Scholar 

  168. Kim HK, Prokunina-Olsson L, Chanock SJ (2012) Common genetic variants in miR-1206 (8q24.2) and miR-612 (11q13.3) affect biogenesis of mature miRNA forms. PLoS One 7(10):ARTN e47454. doi:10.1371/journal.pone.0047454

    Article  CAS  Google Scholar 

  169. Li YW, Kong DJ, Ahmad A, Bao B, Dyson G, Sarkar FH (2012) Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics-Us 7(8):940–949. doi:10.4161/epi.21236

    Article  CAS  Google Scholar 

  170. Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C, Qu W, Nair S, Horvath LG, Armstrong NJ, Kench JG, Sutherland RL, Clark SJ (2013) Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 32(23):2891–2899. doi:10.1038/onc.2012.300

    Article  CAS  PubMed  Google Scholar 

  171. Zhang Q, Padi SKR, Tindall DJ, Guo B (2014) Polycomb protein EZH2 suppresses apoptosis by silencing the proapoptotic miR-31. Cell Death Dis 5:ARTN e1486. doi:10.1038/cddis.2014.454

    Article  CAS  Google Scholar 

  172. Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122. doi:10.1158/0008-5472.CAN-07-2544

    Article  CAS  PubMed  Google Scholar 

  173. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Butzow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. P Natl Acad Sci USA 105(19):7004–7009. doi:10.1073/pnas.0801615105

    Article  CAS  Google Scholar 

  174. Teng Y, Zuo X, Hou M, Zhang Y, Li C, Luo W, Li X (2016) A double-negative feedback interaction between MicroRNA-29b and DNMT3A/3B contributes to ovarian cancer progression. Cell Physiol Biochem 39(6):2341–2352. doi:10.1159/000447926

    Article  CAS  PubMed  Google Scholar 

  175. Yao TT, Rao QX, Liu LY, Zheng CY, Xie QS, Liang JX, Lin ZQ (2013) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virol J 10:Artn 175. doi:10.1186/1743-422x-10-175

    Article  CAS  Google Scholar 

  176. Wang SZ, Cao XL, Ding B, Chen JF, Cui MJ, Xu YL, Lu XY, Zhang ZD, He AQ, Jin H (2016) The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population. Gene 595(1):109–114. doi:10.1016/j.gene.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  177. Campos-Viguri GE, Jimenez-Wences H, Peralta-Zaragoza O, Torres-Altamirano G, Soto-Flores DG, Hernandez-Sotelo D, Alarcon-Romero LD, Jimenez-Lopez MA, Illades-Aguiar B, Fernandez-Tilapa G (2015) miR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infect Agents Cancer 10:ARTN 42. doi:10.1186/s13027-015-0037-6

    Article  CAS  Google Scholar 

  178. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, Matsuda Y, Sato-Otsubo A, Muto S, Utsunomiya A, Yamaguchi K, Uchimaru K, Ogawa S, Watanabe T (2012) Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappa B pathway in adult T cell leukemia and other cancers. Cancer Cell 21(1):121–135. doi:10.1016/j.ccr.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  179. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E, Rehli M, Byrd JC, Wendtner CM, Plass C (2012) Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant MicroRNA expression in chronic lymphocytic leukemia. Cancer Res 72(15):3775–3785. doi:10.1158/0008-5472.Can-12-0803

    Article  CAS  PubMed  Google Scholar 

  180. Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY, Yu L (2011) Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 15(12):2760–2767. doi:10.1111/j.1582-4934.2011.01274.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright KL, Sotomayor E, Bhalla K, Tao J (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 22(4):506–523. doi:10.1016/j.ccr.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Merkel O, Hamacher F, Griessl R, Grabner L, Schiefer AI, Prutsch N, Baer C, Egger G, Schlederer M, Krenn PW, Hartmann TN, Simonitsch-Klupp I, Plass C, Staber PB, Moriggl R, Turner SD, Greil R, Kenner L (2015) Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. J Pathol 236(4):445–456. doi:10.1002/path.4539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Qi L, Hu Y, Zhan Y, Wang J, Wang BB, Xia HF, Ma X (2012) A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer's disease in a Mongolian population. Neurosci Lett 515(1):1–6. doi:10.1016/j.neulet.2012.02.061

    Article  CAS  PubMed  Google Scholar 

  184. Zhao Y, Du Y, Zhao S, Guo Z (2015) Single-nucleotide polymorphisms of microRNA processing machinery genes and risk of colorectal cancer. Onco Targets Ther 8:421–425. doi:10.2147/OTT.S78647

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004. doi:10.1073/pnas.0307323101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. doi:10.1073/pnas.0707628104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724. doi:10.1038/onc.2009.19

    Article  CAS  PubMed  Google Scholar 

  188. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469. doi:10.1038/nbt1392

    Article  CAS  PubMed  Google Scholar 

  189. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  190. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675. doi:10.1111/j.1365-2141.2008.07077.x

    Article  PubMed  Google Scholar 

  191. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. doi:10.1073/pnas.0804549105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. doi:10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS, Hatton CS (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121(5):1156–1161. doi:10.1002/ijc.22800

    Article  CAS  PubMed  Google Scholar 

  194. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092. doi:10.1111/j.1349-7006.2010.01650.x

    Article  CAS  PubMed  Google Scholar 

  195. Li HY, Li YM, Li Y, Shi XW, Chen H (2016) Circulating microRNA-137 is a potential biomarker for human glioblastoma. Eur Rev Med Pharmacol Sci 20(17):3599–3604

    PubMed  Google Scholar 

  196. Zhang R, Pang B, Xin T, Guo H, Xing Y, Xu SC, Feng B, Liu B, Pang Q (2016) Plasma miR-221/222 family as novel descriptive and prognostic biomarkers for Glioma. Mol Neurobiol 53(3):1452–1460. doi:10.1007/s12035-014-9079-9

    Article  CAS  PubMed  Google Scholar 

  197. Manterola L, Guruceaga E, Perez-Larraya JG, Gonzalez-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Sampron N, Barrena C, Ruiz I, Agirre A, Ayuso A, Rodriguez J, Gonzalez A, Xipell E, Matheu A, de Munain AL, Tunon T, Zazpe I, Garcia-Foncillas J, Paris S, Delattre JY, Alonso MM (2014) A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-Oncology 16(4):520–527. doi:10.1093/neuonc/not218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S, Kalinina J, Hua W, Kesari S, Mao Y, Breakefield XO, Hochberg FH, Van Meir EG, Carter BS, Chen CC (2013) miR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8(10):ARTN e78115. doi:10.1371/journal.pone.0078115

    Article  CAS  Google Scholar 

  199. Duz MB, Karatas OF, Guzel E, Turgut NF, Yilmaz M, Creighton CJ, Ozen M (2016) Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol 39(2):187–193. doi:10.1007/s13402-015-0259-z

    Article  CAS  Google Scholar 

  200. Salazar C, Nagadia R, Pandit P, Cooper-White J, Banerjee N, Dimitrova N, Coman WB, Punyadeera C (2014) A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol 37(5):331–338. doi:10.1007/s13402-014-0188-2

    Article  CAS  Google Scholar 

  201. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW (2012) Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck-J Sci Spec 34(2):219–224. doi:10.1002/hed.21713

    Article  Google Scholar 

  202. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, Komatsu A, Jitsukawa M, Matsubara H (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Brit J Cancer 108(3):644–652. doi:10.1038/bjc.2013.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, Kosuga T, Iitaka D, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E (2011) Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Brit J Cancer 105(1):104–111. doi:10.1038/bjc.2011.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, Ono M, Takeshita F, Niida S, Shimizu C, Fujiwara Y, Kinoshita T, Tamura K, Ochiya T (2016) Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci 107(3):326–334. doi:10.1111/cas.12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ng EKO, Li RFN, Shin VY, Jin HC, Leung CPH, Ma ESK, Pang R, Chua D, Chu KM, Law WL, Law SYK, Poon RTP, Kwong A (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8(1):ARTN e53141. doi:10.1371/journal.pone.0053141

    Article  CAS  Google Scholar 

  206. Guo LJ, Zhang QY (2012) Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med 30(3):680–686. doi:10.3892/ijmm.2012.1021

    Article  CAS  PubMed  Google Scholar 

  207. Zhu WY, He JY, Chen DD, Zhang BJ, Xu LY, Ma HJ, Liu XG, Zhang YK, Le HB (2014) Expression of miR-29c, miR-93, and miR-429 as potential biomarkers for detection of early stage non-small lung cancer. PLoS One 9(s):ARTN e87780. doi:10.1371/journal.pone.0087780

    Article  CAS  Google Scholar 

  208. Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT, Ochs MF, Ahrendt SA, Mambo E, Califano JA (2012) Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS One 7(2):ARTN e32307. doi:10.1371/journal.pone.0032307

    Article  CAS  Google Scholar 

  209. Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ (2011) miR-1254 and miR-574-5p serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol 6(3):482–488. doi:10.1097/JTO.0b013e318208c785

    Article  PubMed  Google Scholar 

  210. Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, Dai J, Ma H, Hu Z, Shen H, Xu Y, Jin G (2014) A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Brit J Cancer 110(9):2291–2299. doi:10.1038/bjc.2014.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG (2013) MiRNA-199a-3p: a potential circulating diagnostic biomarker for early gastric cancer. J Surg Oncol 108(2):89–92. doi:10.1002/jso.23358

    Article  CAS  PubMed  Google Scholar 

  212. Liu HS, Zhu L, Liu BY, Yang L, Meng XX, Zhang W, Ma YY, Xiao HS (2012) Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett 316(2):196–203. doi:10.1016/j.canlet.2011.10.034

    Article  CAS  PubMed  Google Scholar 

  213. Wang M, Gu HB, Wang S, Qian H, Zhu W, Zhang L, Zhao CH, Tao Y, Xu WR (2012) Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol Med Rep 5(6):1514–1520. doi:10.3892/mmr.2012.828

    CAS  PubMed  Google Scholar 

  214. Shen J, Wang AT, Wang Q, Gurvich I, Siegel AB, Remotti H, Santella RM (2013) Exploration of genome-wide circulating MicroRNA in hepatocellular carcinoma: MiR-483-5p as a potential biomarker. Cancer Epidemiol Biomarkers Prev 22(12):2364–2373. doi:10.1158/1055-9965.Epi-13-0237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Liu AM, Yao TJ, Wang W, Wong KF, Lee NP, Fan ST, Poon RTP, Gao CF, Luk JM (2012) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open 2(2):ARTN e000825. doi:10.1136/bmjopen-2012-000825

    Article  Google Scholar 

  216. Gui JH, Tian YP, Wen XY, Zhang WH, Zhang PJ, Gao J, Run W, Tian LY, Jia XW, Gao YH (2011) Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci 120(5–6):183–193. doi:10.1042/Cs20100297

    Article  CAS  PubMed  Google Scholar 

  217. Que RS, Ding GP, Chen JH, Cao LP (2013) Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol 11:Artn 219. doi:10.1186/1477-7819-11-219

    Article  Google Scholar 

  218. Chabre O, Libé R, Assie G, Barreau O, Bertherat J, Bertagna X, Feige JJ, Cherradi N (2013) Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr Relat Cancer 20(4):579–594. doi:10.1530/ERC-13-0051

    CAS  PubMed  Google Scholar 

  219. Liu R, Chen X, Du YQ, Yao WY, Shen L, Wang C, Hu ZB, Zhuang R, Ning G, Zhang CN, Yuan YZ, Li ZS, Zen K, Ba Y, Zhang CY (2012) Serum MicroRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58(3):610–618. doi:10.1373/clinchem.2011.172767

    Article  CAS  PubMed  Google Scholar 

  220. Wang C, Hu JC, Lu ML, Gu HW, Zhou XJ, Chen X, Zen K, Zhang CY, Zhang TH, Ge JP, Wang JJ, Zhang CN (2015) A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep-Uk 5:UNSP 7610. doi:10.1038/srep07610

    Article  CAS  Google Scholar 

  221. Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R, Slaby O (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:Artn 55. doi:10.1186/1479-5876-10-55

    Article  CAS  Google Scholar 

  222. Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, Shinden Y, Eguchi H, Yamamoto H, Doki Y, Mori M, Ochiya T, Mimori K (2015) Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Brit J Cancer 113(2):275–281. doi:10.1038/bjc.2015.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuchiya N (2014) Circulating Exosomal microRNAs as biomarkers of Colon cancer. PLoS One 9(4):ARTN e92921. doi:10.1371/journal.pone.0092921

    Article  CAS  Google Scholar 

  224. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A (2014) Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 259(4):735–743. doi:10.1097/SLA.0b013e3182a6909d

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zanutto S, Pizzamiglio S, Ghilotti M, Bertan C, Ravagnani F, Perrone F, Leo E, Pilotti S, Verderio P, Gariboldi M, Pierotti MA (2014) Circulating miR-378 in plasma: a reliable, haemolysis-independent biomarker for colorectal cancer. Brit J Cancer 110(4):1001–1007. doi:10.1038/bjc.2013.819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Eissa S, Habib H, Ali E, Kotb Y (2015) Evaluation of urinary miRNA-96 as a potential biomarker for bladder cancer diagnosis. Med Oncol 32(1):ARTN 413. doi:10.1007/s12032-014-0413-x

    Article  CAS  Google Scholar 

  227. Wang G, Chan ESY, Kwan BCH, Li PKT, Yip SKH, Szeto CC, Ng CF (2012) Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer 10(2):106–113. doi:10.1016/j.clgc.2012.01.001

    Article  PubMed  Google Scholar 

  228. Wach S, Al-Janabi O, Weigelt K, Fischer K, Greither T, Marcou M, Theil G, Nolte E, Holzhausen HJ, Stohr R, Huppert V, Hartmann A, Fornara P, Wullich B, Taubert H (2015) The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int J Cancer 137(6):1406–1416. doi:10.1002/ijc.29505

    Article  CAS  PubMed  Google Scholar 

  229. Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, Yang J (2012) A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 72(13):1443–1452. doi:10.1002/pros.22495

    Article  CAS  PubMed  Google Scholar 

  230. Guo FJ, Tian JY, Lin Y, Jin YM, Wang L, Cui MH (2013) Serum microRNA-92 expression in patients with ovarian epithelial carcinoma. J Int Med Res 41(5):1456–1461. doi:10.1177/0300060513487652

    Article  CAS  PubMed  Google Scholar 

  231. Zhang YJ, Zhang DH, Wang F, Xu DF, Guo Y, Cui W (2015) Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci Rep-Uk 5:17942

    Article  CAS  Google Scholar 

  232. Zhao S, Yao DS, Chen JY, Ding N (2013) Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genet Test Mol Biomarkers 17(8):631–636. doi:10.1089/gtmb.2013.0085

    Article  CAS  PubMed  Google Scholar 

  233. Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, Kurre P (2015) Serum Exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep-Uk 5:ARTN 11295. doi:10.1038/srep11295

    Article  CAS  Google Scholar 

  234. Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R, Hamade E, Daher A, Hussein N, ElDirani R, Berri F, Vanhamme L, Burny A, Martiat P, Rouas R, Badran B (2013) Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med 11:Artn 31. doi:10.1186/1479-5876-11-31

    Article  CAS  Google Scholar 

  235. Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, Maghnouj A, Zollner H, Reinacher-Schick A, Schmiegel W, Hahn SA, Schroers R (2011) Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117(11):3140–3146. doi:10.1182/blood-2010-09-308684

    Article  CAS  PubMed  Google Scholar 

  236. Ohyashiki K, Umezu T, Yoshizawa S, Ito Y, Ohyashiki M, Kawashima H, Tanaka M, Kuroda M, Ohyashiki JH (2011) Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin’s lymphoma. PLoS One 6(2):ARTN e16408. doi:10.1371/journal.pone.0016408

    Article  CAS  Google Scholar 

  237. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006. doi:10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  238. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424. doi:10.1038/ncb1386

    Article  CAS  PubMed  Google Scholar 

  239. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    Article  CAS  PubMed  Google Scholar 

  240. Tennen RI, Bua DJ, Wright WE, Chua KF (2011) SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2:433. doi:10.1038/ncomms1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Garcia-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36(1):94–99. doi:10.1038/ng1278

    Article  CAS  PubMed  Google Scholar 

  242. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120. doi:10.1038/35065132

    Article  CAS  PubMed  Google Scholar 

  243. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7(4):420–428. doi:10.1038/ncb1235

    Article  CAS  PubMed  Google Scholar 

  244. Dang-Nguyen TQ, Haraguchi S, Furusawa T, Somfai T, Kaneda M, Watanabe S, Akagi S, Kikuchi K, Tajima A, Nagai T (2013) Downregulation of histone methyltransferase genes SUV39H1 and SUV39H2 increases telomere length in embryonic stem-like cells and embryonic fibroblasts in pigs. J Reprod Dev 59(1):27–32

    CAS  PubMed  Google Scholar 

  245. Rodriguez-Rodero S, Fernandez-Morera JL, Fernandez AF, Menendez-Torre E, Fraga MF (2010) Epigenetic regulation of aging. Discov Med 10(52):225–233

    PubMed  Google Scholar 

  246. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of pol II transcription. Cell 63(4):751–762

    Article  CAS  PubMed  Google Scholar 

  247. Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292(5524):2075–2077. doi:10.1126/science.1062329

    Article  CAS  PubMed  Google Scholar 

  248. Stadler G, Rahimov F, King OD, Chen JC, Robin JD, Wagner KR, Shay JW, Emerson CP Jr, Wright WE (2013) Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nat Struct Mol Biol 20(6):671–678. doi:10.1038/nsmb.2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, Wagner KR, Shay JW, Wright WE (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev 28(22):2464–2476. doi:10.1101/gad.251041.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, Lai TP, Zhang N, Wright WE, Shay JW (2016) Regulation of the human telomerase Gene TERT by telomere position effect-over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol 14(12):e2000016. doi:10.1371/journal.pbio.2000016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, El Hachem M, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A (2014) Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 7(1):1. doi:10.1186/1756-8935-7-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. O'Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181. doi:10.1038/nrm2848

    PubMed  PubMed Central  Google Scholar 

  254. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110. doi:10.1101/gad.1346005

    Article  PubMed  CAS  Google Scholar 

  255. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336(6081):593–597. doi:10.1126/science.1218498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4):951–960

    Article  CAS  PubMed  Google Scholar 

  257. Lopatina NG, Poole JC, Saldanha SN, Hansen NJ, Key JS, Pita MA, Andrews LG, Tollefsbol TO (2003) Control mechanisms in the regulation of telomerase reverse transcriptase expression in differentiating human teratocarcinoma cells. Biochem Biophys Res Commun 306(3):650–659

    Article  CAS  PubMed  Google Scholar 

  258. Shin KH, Kang MK, Dicterow E, Park NH (2003) Hypermethylation of the hTERT promoter inhibits the expression of telomerase activity in normal oral fibroblasts and senescent normal oral keratinocytes. Br J Cancer 89(8):1473–1478. doi:10.1038/sj.bjc.6601291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59(24):6087–6090

    CAS  PubMed  Google Scholar 

  260. Dessain SK, Yu H, Reddel RR, Beijersbergen RL, Weinberg RA (2000) Methylation of the human telomerase gene CpG island. Cancer Res 60(3):537–541

    CAS  PubMed  Google Scholar 

  261. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, Akdemir KC, Seth S, Song X, Wang Q, Lichtenberg T, Hu J, Zhang J, Zheng S, Verhaak RG (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet 49(3). doi:10.1038/ng.3781

  262. Renaud S, Loukinov D, Abdullaev Z, Guilleret I, Bosman FT, Lobanenkov V, Benhattar J (2007) Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 35(4):1245–1256. doi:10.1093/nar/gkl1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Takakura M, Kyo S, Sowa Y, Wang Z, Yatabe N, Maida Y, Tanaka M, Inoue M (2001) Telomerase activation by histone deacetylase inhibitor in normal cells. Nucleic Acids Res 29(14):3006–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hou M, Wang X, Popov N, Zhang A, Zhao X, Zhou R, Zetterberg A, Bjorkholm M, Henriksson M, Gruber A, Xu D (2002) The histone deacetylase inhibitor trichostatin a derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp Cell Res 274(1):25–34. doi:10.1006/excr.2001.5462

    Article  CAS  PubMed  Google Scholar 

  265. Khaw AK, Silasudjana M, Banerjee B, Suzuki M, Baskar R, Hande MP (2007) Inhibition of telomerase activity and human telomerase reverse transcriptase gene expression by histone deacetylase inhibitor in human brain cancer cells. Mutat Res 625(1–2):134–144. doi:10.1016/j.mrfmmm.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  266. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8(4):299–309. doi:10.1038/nrg2047

    Article  CAS  PubMed  Google Scholar 

  267. Atkinson SP, Hoare SF, Glasspool RM, Keith WN (2005) Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 65(17):7585–7590. doi:10.1158/0008-5472.CAN-05-1715

    Article  CAS  PubMed  Google Scholar 

  268. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791. doi:10.1016/S0959-8049(97)00062-2

    Article  CAS  PubMed  Google Scholar 

  269. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11):1271–1274

    Article  CAS  PubMed  Google Scholar 

  270. Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11(5):319–330. doi:10.1038/nrg2763

    Article  CAS  PubMed  Google Scholar 

  271. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu XY, Fontebasso AM, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann MU, van Meter T, Fruhwald MC, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Durken M, Kulozik AE, Madden J, Donson A, Foreman NK, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm CM, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth AM, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski PP, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor MD, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister SM (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. doi:10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  272. Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, Heguy A, Petrini JH, Chan TA, Huse JT (2012) Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3(10):1194–1203. doi:10.18632/oncotarget.689

    Article  PubMed  PubMed Central  Google Scholar 

  273. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA Jr, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203. doi:10.1126/science.1200609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Durant ST (2012) Telomerase-independent paths to immortality in predictable cancer subtypes. J Cancer 3:67–82. doi:10.7150/jca.3965

    Article  PubMed  PubMed Central  Google Scholar 

  275. Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Choo KH (2010) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 20(3):351–360. doi:10.1101/gr.101477.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24(4):368–371. doi:10.1038/74191

    Article  CAS  PubMed  Google Scholar 

  277. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. doi:10.1101/gad.566910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 107(32):14075–14080. doi:10.1073/pnas.1008850107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Napier CE, Huschtscha LI, Harvey A, Bower K, Noble JR, Hendrickson EA, Reddel RR (2015) ATRX represses alternative lengthening of telomeres. Oncotarget 6(18):16543–16558. doi:10.18632/oncotarget.3846

    Article  PubMed  PubMed Central  Google Scholar 

  280. O'Sullivan RJ, Almouzni G (2014) Assembly of telomeric chromatin to create ALTernative endings. Trends Cell Biol 24(11):675–685. doi:10.1016/j.tcb.2014.07.007

    Article  PubMed  CAS  Google Scholar 

  281. Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM (2009) Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res 37(4):1152–1159. doi:10.1093/nar/gkn1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Episkopou H, Draskovic I, Van Beneden A, Tilman G, Mattiussi M, Gobin M, Arnoult N, Londono-Vallejo A, Decottignies A (2014) Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res 42(7):4391–4405. doi:10.1093/nar/gku114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Feuerhahn S, Iglesias N, Panza A, Porro A, Lingner J (2010) TERRA biogenesis, turnover and implications for function. FEBS Lett 584(17):3812–3818. doi:10.1016/j.febslet.2010.07.032

    Article  CAS  PubMed  Google Scholar 

  284. Deng Z, Wang Z, Stong N, Plasschaert R, Moczan A, Chen HS, Hu S, Wikramasinghe P, Davuluri RV, Bartolomei MS, Riethman H, Lieberman PM (2012) A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. EMBO J 31(21):4165–4178. doi:10.1038/emboj.2012.266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801. doi:10.1126/science.1147182

    Article  CAS  PubMed  Google Scholar 

  286. Arnoult N, Van Beneden A, Decottignies A (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat Struct Mol Biol 19(9):948–956. doi:10.1038/nsmb.2364

    Article  CAS  PubMed  Google Scholar 

  287. Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39(2):243–250. doi:10.1038/ng1952

    Article  CAS  PubMed  Google Scholar 

  288. Thijssen PE, Tobi EW, Balog J, Schouten SG, Kremer D, El Bouazzaoui F, Henneman P, Putter H, Eline Slagboom P, Heijmans BT, van der Maarel SM (2013) Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes. Epigenetics Off J DNA Meth Soc 8(5):512–521. doi:10.4161/epi.24450

    Article  CAS  Google Scholar 

  289. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, Bersani F, Pineda JR, Suva ML, Benes CH, Haber DA, Boussin FD, Zou L (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347(6219):273–277. doi:10.1126/science.1257216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Reig-Viader R, Vila-Cejudo M, Vitelli V, Busca R, Sabate M, Giulotto E, Caldes MG, Ruiz-Herrera A (2014) Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis. Biol Reprod 90(5):103. doi:10.1095/biolreprod.113.116954

    Article  PubMed  CAS  Google Scholar 

  291. Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35(4):403–413. doi:10.1016/j.molcel.2009.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Porro A, Feuerhahn S, Lingner J (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6(4):765–776. doi:10.1016/j.celrep.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  293. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38(17):5797–5806. doi:10.1093/nar/gkq296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Redon S, Zemp I, Lingner J (2013) A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res 41(19):9117–9128. doi:10.1093/nar/gkt695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Negishi Y, Kawaji H, Minoda A, Usui K (2015) Identification of chromatin marks at TERRA promoter and encoding region. Biochem Biophys Res Commun 467(4):1052–1057. doi:10.1016/j.bbrc.2015.09.176

    Article  CAS  PubMed  Google Scholar 

  296. Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R, Giulotto E, Azzalin CM (2009) CpG-island promoters drive transcription of human telomeres. RNA 15(12):2186–2194. doi:10.1261/rna.1748309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Caslini C, Connelly JA, Serna A, Broccoli D, Hess JL (2009) MLL associates with telomeres and regulates telomeric repeat-containing RNA transcription. Mol Cell Biol 29(16):4519–4526. doi:10.1128/MCB.00195-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Neumann AA, Watson CM, Noble JR, Pickett HA, Tam PP, Reddel RR (2013) Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev 27(1):18–23. doi:10.1101/gad.205062.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Novakovic B, Napier CE, Vryer R, Dimitriadis E, Manuelpillai U, Sharkey A, Craig JM, Reddel RR, Saffery R (2016) DNA methylation mediated up-regulation of TERRA non-coding RNA is coincident with elongated telomeres in the human placenta. Mol Hum Reprod 22(11):791–799. doi:10.1093/molehr/gaw053

    Article  PubMed  Google Scholar 

  300. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. doi:10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, Kossenkov AV, Showe LC, Zhang R, Huang Q, Conejo-Garcia JR, Lieberman PM (2015) Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A 112(46):E6293–E6300. doi:10.1073/pnas.1505962112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wang Z, Lieberman PM (2016) The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol 13(8):690–695. doi:10.1080/15476286.2016.1203503

    Article  PubMed  PubMed Central  Google Scholar 

  303. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, Kronenberg F, Kiechl S (2010) Telomere length and risk of incident cancer and cancer mortality. JAMA 304(1):69–75. doi:10.1001/jama.2010.897

    Article  CAS  PubMed  Google Scholar 

  304. Prescott J, Wentzensen IM, Savage SA, De Vivo I (2012) Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res 730(1–2):75–84. doi:10.1016/j.mrfmmm.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  305. Pellatt AJ, Wolff RK, Torres-Mejia G, John EM, Herrick JS, Lundgreen A, Baumgartner KB, Giuliano AR, Hines LM, Fejerman L, Cawthon R, Slattery ML (2013) Telomere length, telomere-related genes, and breast cancer risk: the breast cancer health disparities study. Genes Chromosomes Cancer 52(7):595–609. doi:10.1002/gcc.22056

    CAS  PubMed  Google Scholar 

  306. Zhu X, Han W, Xue W, Zou Y, Xie C, Du J, Jin G (2016) The association between telomere length and cancer risk in population studies. Sci Rep 6:22243. doi:10.1038/srep22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Doi T, Shibata K, Yoshida M, Takagi M, Tera M, Nagasawa K, Shin-ya K, Takahashi T (2011) (S)-stereoisomer of telomestatin as a potent G-quadruplex binder and telomerase inhibitor. Org Biomol Chem 9(2):387–393. doi:10.1039/c0ob00513d

    Article  CAS  PubMed  Google Scholar 

  308. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, Laborde RR, Wassie E, Schimek L, Hanson CA, Gangat N, Wang X, Pardanani A (2015) A pilot study of the telomerase inhibitor Imetelstat for Myelofibrosis. N Engl J Med 373(10):908–919. doi:10.1056/NEJMoa1310523

    Article  CAS  PubMed  Google Scholar 

  309. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi:10.1016/j.ccr.2007.12.003

    Article  PubMed  CAS  Google Scholar 

  310. Dobrovic A, Kristensen LS (2009) DNA methylation, epimutations and cancer predisposition. Int J Biochem Cell Biol 41(1):34–39. doi:10.1016/j.biocel.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  311. Quiet CA, Ferguson DJ, Weichselbaum RR, Hellman S (1995) Natural history of node-negative breast cancer: a study of 826 patients with long-term follow-up. J Clin Oncol 13(5):1144–1151. doi:10.1200/jco.1995.13.5.1144

    Article  CAS  PubMed  Google Scholar 

  312. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91(1):80–85

    Article  CAS  PubMed  Google Scholar 

  313. Luna-Perez P, Rodriguez-Coria DF, Arroyo B, Gonzalez-Macouzet J (1998) The natural history of liver metastases from colorectal cancer. Arch Med Res 29(4):319–324

    CAS  PubMed  Google Scholar 

  314. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597

    Article  CAS  PubMed  Google Scholar 

  315. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. doi:10.1056/NEJMoa022152

    Article  PubMed  Google Scholar 

  316. Strauss DC, Thomas JM (2010) Transmission of donor melanoma by organ transplantation. Lancet Oncol 11(8):790–796. doi:10.1016/S1470-2045(10)70024-3

    Article  PubMed  Google Scholar 

  317. Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91(13):1113–1124

    Article  CAS  PubMed  Google Scholar 

  318. Engel J, Eckel R, Kerr J, Schmidt M, Furstenberger G, Richter R, Sauer H, Senn HJ, Holzel D (2003) The process of metastasisation for breast cancer. Eur J Cancer 39(12):1794–1806

    Article  CAS  PubMed  Google Scholar 

  319. Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K (2000) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18(1):80–86. doi:10.1200/jco.2000.18.1.80

    Article  CAS  PubMed  Google Scholar 

  320. Mansi JL, Berger U, Easton D, McDonnell T, Redding WH, Gazet JC, McKinna A, Powles TJ, Coombes RC (1987) Micrometastases in bone marrow in patients with primary breast cancer: evaluation as an early predictor of bone metastases. Br Med J (Clin Res Ed) 295(6606):1093–1096

    Article  CAS  Google Scholar 

  321. Klein CA (2000) The biology and analysis of single disseminated tumour cells. Trends Cell Biol 10(11):489–493

    Article  CAS  PubMed  Google Scholar 

  322. Hartkopf AD, Taran FA, Wallwiener M, Hahn M, Becker S, Solomayer EF, Brucker SY, Fehm TN, Wallwiener D (2014) Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients – results from a large single-centre analysis. Eur J Cancer 50(15):2550–2559. doi:10.1016/j.ejca.2014.06.025

    Article  PubMed  Google Scholar 

  323. Effenberger KE, Schroeder C, Eulenburg C, Reeh M, Tachezy M, Riethdorf S, Vashist YK, Izbicki JR, Pantel K, Bockhorn M (2012) Disseminated tumor cells in pancreatic cancer-an independent prognosticator of disease progression and survival. Int J Cancer 131(4):E475–E483. doi:10.1002/ijc.26439

    Article  CAS  PubMed  Google Scholar 

  324. Lilleby W, Stensvold A, Mills IG, Nesland JM (2013) Disseminated tumor cells and their prognostic significance in nonmetastatic prostate cancer patients. Int J Cancer 133(1):149–155. doi:10.1002/ijc.28002

    Article  CAS  PubMed  Google Scholar 

  325. Muller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A, Janicke F, Pantel K (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 11(10):3678–3685. doi:10.1158/1078-0432.CCR-04-2469

    Article  PubMed  Google Scholar 

  326. Schindlbeck C, Andergassen U, Hofmann S, Juckstock J, Jeschke U, Sommer H, Friese K, Janni W, Rack B (2013) Comparison of circulating tumor cells (CTC) in peripheral blood and disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients. J Cancer Res Clin Oncol 139(6):1055–1062. doi:10.1007/s00432-013-1418-0

    Article  PubMed  Google Scholar 

  327. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621. doi:10.1158/1078-0432.CCR-06-0169

    Article  CAS  PubMed  Google Scholar 

  328. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11(4):R46. doi:10.1186/bcr2333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E, Gazzaniga P (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449–455. doi:10.1007/s10549-011-1373-x

    Article  CAS  PubMed  Google Scholar 

  330. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  331. Gazin C, Wajapeyee N, Gobeil S, Virbasius CM, Green MR (2007) An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449(7165):1073–1077. doi:10.1038/nature06251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-awar R, Katona BW, Shilatifard A, Huang J, Hua X, Arrowsmith CH, Berger SL (2015) Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525(7568):206–211. doi:10.1038/nature15251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478. doi:10.1038/nature10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956. doi:10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. doi:10.1038/nrm.2016.8

    Article  CAS  PubMed  Google Scholar 

  336. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, Soejima H, Moriwaki H, Yamanaka S, Woltjen K, Yamada Y (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156(4):663–677. doi:10.1016/j.cell.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  337. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, Wongvipat J, Ku SY, Gao D, Cao Z, Shah N, Adams EJ, Abida W, Watson PA, Prandi D, Huang CH, de Stanchina E, Lowe SW, Ellis L, Beltran H, Rubin MA, Goodrich DW, Demichelis F, Sawyers CL (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355(6320):84–88. doi:10.1126/science.aah4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, Gao J, Zhao Z, Liu C (2014) Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 5(21):10803–10815. doi:10.18632/oncotarget.2506

    Article  PubMed  PubMed Central  Google Scholar 

  339. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J, Rivers CS, Foo CK, Bhatt D, Stinson J, Gnad F, Haverty PM, Gentleman R, Chaudhuri S, Janakiraman V, Jaiswal BS, Parikh C, Yuan W, Zhang Z, Koeppen H, Wu TD, Stern HM, Yauch RL, Huffman KE, Paskulin DD, Illei PB, Varella-Garcia M, Gazdar AF, de Sauvage FJ, Bourgon R, Minna JD, Brock MV, Seshagiri S (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44(10):1111–1116. doi:10.1038/ng.2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K (2013) Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One 8(2):e56324. doi:10.1371/journal.pone.0056324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444. doi:10.1158/0008-5472.CAN-10-2638

    Article  CAS  PubMed  Google Scholar 

  342. Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, Urquiza L, Jauregi P, Lopez de Munain A, Sampron N, Aramburu A, Tejada-Solis S, Vicente C, Odero MD, Bandres E, Garcia-Foncillas J, Idoate MA, Lang FF, Fueyo J, Gomez-Manzano C (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6(11):e26740. doi:10.1371/journal.pone.0026740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Nettersheim D, Biermann K, Gillis AJ, Steger K, Looijenga LH, Schorle H (2011) NANOG promoter methylation and expression correlation during normal and malignant human germ cell development. Epigenetics Off J DNA Meth Soc 6(1):114–122. doi:10.4161/epi.6.1.13433

    Article  CAS  Google Scholar 

  344. Berezovsky AD, Poisson LM, Cherba D, Webb CP, Transou AD, Lemke NW, Hong X, Hasselbach LA, Irtenkauf SM, Mikkelsen T, de Carvalho AC (2014) Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 16 (3):193–206, 206 e119–125. doi:10.1016/j.neo.2014.03.006

  345. Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N (2015) Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther 6:2. doi:10.1186/s13287-015-0002-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  346. Lin SC, Chou YT, Jiang SS, Chang JL, Chung CH, Kao YR, Chang IS, Wu CW (2016) Epigenetic switch between SOX2 and SOX9 regulates cancer cell plasticity. Cancer Res 76(23):7036–7048. doi:10.1158/0008-5472.CAN-15-3178

    Article  CAS  PubMed  Google Scholar 

  347. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  348. Kahn HJ, Presta A, Yang LY, Blondal J, Trudeau M, Lickley L, Holloway C, McCready DR, Maclean D, Marks A (2004) Enumeration of circulating tumor cells in the blood of breast cancer patients after filtration enrichment: correlation with disease stage. Breast Cancer Res Treat 86(3):237–247. doi:10.1023/B:BREA.0000036897.92513.72

    Article  PubMed  Google Scholar 

  349. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018. doi:10.1158/1078-0432.CCR-10-1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Coumans FA, van Dalum G, Beck M, Terstappen LW (2013) Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4):e61770. doi:10.1371/journal.pone.0061770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Kruger W, Datta C, Badbaran A, Togel F, Gutensohn K, Carrero I, Kroger N, Janicke F, Zander AR (2000) Immunomagnetic tumor cell selection--implications for the detection of disseminated cancer cells. Transfusion 40(12):1489–1493

    Article  CAS  PubMed  Google Scholar 

  352. Weihrauch MR, Skibowski E, Draube A, Geller A, Tesch H, Diehl V, Bohlen H (2002) Immunomagnetic enrichment and detection of isolated tumor cells in bone marrow of patients with epithelial malignancies. Clin Exp Metastasis 19(7):617–621

    Article  CAS  PubMed  Google Scholar 

  353. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127. doi:10.1038/nbt.2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. doi:10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Fan HC, Wang J, Potanina A, Quake SR (2011) Whole-genome molecular haplotyping of single cells. Nat Biotechnol 29(1):51–57. doi:10.1038/nbt.1739

    Article  CAS  PubMed  Google Scholar 

  356. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. doi:10.1038/nbt.3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, Andergassen U, Meier-Stiegen F, Czyz ZT, Alberter B, Treitschke S, Schamberger T, Sergio M, Bregola G, Doffini A, Gianni S, Calanca A, Signorini G, Bolognesi C, Hartmann A, Fasching PA, Sandri MT, Rack B, Fehm T, Giorgini G, Manaresi N, Klein CA (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386. doi:10.15252/emmm.201404033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, Simi L, Mancini I, Vannucchi AM, Pazzagli M, Di Leo A, Pinzani P (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7(18):26107–26119. doi:10.18632/oncotarget.8431

    Article  PubMed  PubMed Central  Google Scholar 

  359. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, Jin X, Shi X, Liu P, Wang X, Wang W, Wei Y, Li X, Guo F, Wu X, Fan X, Yong J, Wen L, Xie SX, Tang F, Qiao J (2014) The DNA methylation landscape of human early embryos. Nature 511(7511):606–610. doi:10.1038/nature13544

    Article  CAS  PubMed  Google Scholar 

  361. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. doi:10.1038/nmeth.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, Schumacher A (2011) A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 39(7):e44. doi:10.1093/nar/gkq1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Cheow LF, Quake SR, Burkholder WF, Messerschmidt DM (2015) Multiplexed locus-specific analysis of DNA methylation in single cells. Nat Protoc 10(4):619–631. doi:10.1038/nprot.2015.041

    Article  CAS  PubMed  Google Scholar 

  364. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55. doi:10.1016/j.cell.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  365. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11(10):726–734. doi:10.1038/nrc3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473(7345):43–49. doi:10.1038/nature09906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247

    Article  CAS  Google Scholar 

  368. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82. doi:10.1038/nature11232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. doi:10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490. doi:10.1038/nature14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1):110–119. doi:10.1016/j.copbio.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  372. Bheda P, Schneider R (2014) Epigenetics reloaded: the single-cell revolution. Trends Cell Biol 24(11):712–723. doi:10.1016/j.tcb.2014.08.010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Tahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kinehara, M., Yamamoto, Y., Shiroma, Y., Ikuo, M., Shimamoto, A., Tahara, H. (2017). DNA and Histone Modifications in Cancer Diagnosis. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_19

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics