Skip to main content

Minimum Makespan Vehicle Routing Problem with Compatibility Constraints

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

We study a multiple vehicle routing problem, in which a fleet of vehicles is available to serve different types of services demanded at locations. The goal is to minimize the makespan, i.e. the maximum length of any vehicle route. We formulate it as a mixed-integer linear program and propose a branch-cut-and-price algorithm. We also develop an efficient \(O(\log n)\)-approximation algorithm for this problem. We conduct numerical studies on Solomon’s instances with various demand distributions, network topologies, and fleet sizes. Results show that the approximation algorithm solves all the instances very efficiently and produces solutions with good practical bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achuthan, N.R., Caccetta, L., Hill, S.P.: An improved branch-and-cut algorithm for the capacitated vehicle routing problem. Transp. Sci. 37(2), 153–169 (2003)

    Article  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  3. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min-max vehicle routing problem. INFORMS J. Comput. 14(2), 132–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies for the vehicle routing problem. Oper. Res. 59(5), 1269–1283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27821-4_7

    Chapter  Google Scholar 

  7. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feillet, D.: A tutorial on column generation and branch-and-price for vehicle routing problems. Q. J. Oper. Res. 8(4), 407–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks 44(3), 216–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. National Association for Home Care & Hospice. Basic Statistics About Home Care, pp. 1–14. National Association for Home Care & Hospice, Washington, DC (2010)

    Google Scholar 

  12. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 216–227. IEEE (1976)

    Google Scholar 

  13. Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M.P., Reis, M., Uchoa, E., Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. 106(3), 491–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garg, N.: A 3-approximation for the minimum tree spanning \(k\) vertices. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS 1996, pp. 302–309. IEEE Computer Society, Washington, DC (1996)

    Google Scholar 

  15. Golden, B.L., Raghavan, S., Wasil, E.A.: Problem, The Vehicle Routing: Latest Advances and New Challenges. Springer Science & Business Media, New York (2008)

    Book  MATH  Google Scholar 

  16. Gurobi Optimization, Inc., Gurobi optimizer reference manual (2016). http://www.gurobi.com

  17. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities applied to the vehicle-routing problem with time windows. Oper. Res. 56(2), 497–511 (2008)

    Article  MATH  Google Scholar 

  18. Kallehauge, B., Larsen, J., Madsen, O.B., Solomon, M.M.: Vehicle routing problem with time windows. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 67–98. Springer, New York (2005)

    Google Scholar 

  19. Letchford, A.N., Eglese, R.W., Lysgaard, J.: Multistars, partial multistars and the capacitated vehicle routing problem. Math. Program. 94(1), 21–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. 100(2), 423–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for capacitated vehicle routing. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 393–403. Springer, Cham (2014). doi:10.1007/978-3-319-07557-0_33

    Chapter  Google Scholar 

  22. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated vehicle routing problem. Math. Program. 94(2–3), 343–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toth, P., Vigo, D., Routing, V.: Problems, Methods, and Applications. SIAM, Philadelphia (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqian Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, M., Nagarajan, V., Shen, S. (2017). Minimum Makespan Vehicle Routing Problem with Compatibility Constraints. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics