Advertisement

Classification of Gait Motor Imagery While Standing Based on Electroencephalographic Bandpower

  • I. N. Angulo-Sherman
  • M. Rodríguez-Ugarte
  • E. IáñezEmail author
  • J. M. Azorín
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

Brain-computer interfaces (BCIs) translate brain signals into commands for a device. BCIs are a complementary option in therapy during gait rehabilitation. This paper presents a strategy based on electroencephalographic (EEG) bandpower for detecting gait motor imagery (MI) while being standing. In particular, \(\mu \) (8–13 Hz) and 20–35 Hz bands were used. Preliminary results show that two out of three users could achieve an accuracy above 70% of correct classifications. The proposed strategy could be used in a MI-based BCI to enhance brain activity associated to the gait process.

Keywords

Sensorimotor \(\mu \) rhythm Motor imagery BCI EEG 

Notes

Acknowledgments

This research has been carried out in the framework of the project Associate - Decoding and stimulation of motor and sensory brain activity to support long term potentiation through Hebbian and paired associative stimulation during rehabilitation of gait (DPI2014-58431-C4-2-R), funded by the Spanish Ministry of Economy and Competitiveness and by the European Union through the European Regional Development Fund (ERDF) “A way to build Europe”. Also, the Mexican Council of Science and Technology (CONACyT) provided I.N. Angulo-Sherman her scholarship.

References

  1. 1.
    Alamdari, N., Haider, A., Arefin, R., Verma, A., Tavakolian, K., Fazel-Rezai, R.: A review of methods and applications of brain computer interface systems. In: 2016 IEEE International Conference on Electro Information Technology (EIT), pp. 0345–0350. IEEE Press, North Dakota (2016)Google Scholar
  2. 2.
    Teo, W.P., Chew, E.: Is motor-imagery brain-computer interface feasible in stroke rehabilitation? J. PM&R. 6, 723–728 (2014)CrossRefGoogle Scholar
  3. 3.
    Decety, J.: Do imagined and executed actions share the same neural substrate? Cogn. Brain. Res. 3, 87–93 (1996)CrossRefGoogle Scholar
  4. 4.
    Belda-Lois, J.M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., Caria, A., Solis-Escalante, T., Brunner, C., Massimiliano, R.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8, 1–19 (2011). Article no. 66CrossRefGoogle Scholar
  5. 5.
    Hanawaka, T.: Organizing motor imageries. Neurosci. Res. 104, 56–63 (2016)CrossRefGoogle Scholar
  6. 6.
    Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T., Müller-Putz, G.R.: High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage 112, 318–326 (2015)CrossRefGoogle Scholar
  7. 7.
    Naït-Ali, A., Fournier, R.: Signal and Image Processing for Biometrics. John Wiley & Sons, London (2012)CrossRefGoogle Scholar
  8. 8.
    Kübler, A., Neumann, N., Wilhelm, B., Hinterberger, T., Birbaumer, N.: Predictability of brain-computer communication. J. Psychophysiol. 18, 121–129 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. N. Angulo-Sherman
    • 1
  • M. Rodríguez-Ugarte
    • 2
  • E. Iáñez
    • 2
    Email author
  • J. M. Azorín
    • 2
  1. 1.CINVESTAV, Monterrey’s UnitApodacaMexico
  2. 2.Brain-Machine Interface Systems Lab, Systems Engineering and Automation DepartmentMiguel Hernández University of ElcheElche (Alicante)Spain

Personalised recommendations