Skip to main content

Ensembles of Decision Trees for Recommending Touristic Items

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10338)

Abstract

This article analyzes the performance of ensembles of decision trees when applied to the task of recommending tourist items. The motivation comes from the fact that there is an increasing need to explain why a website is recommending some items and not others. The combination of decision trees and ensemble learning is therefore a good way to provide both interpretability and accuracy performance. The results demonstrate the superior performance of ensembles when compared to single decision tree approaches. However, basic colaborative filtering methods seem to perform better than ensembles in our dataset. The study suggests that the number of available features is a key aspect in order to get the true potential of this type of ensembles.

Keywords

  • Ensembles
  • Decision trees
  • Recomendations
  • Tourism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-59773-7_52
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-59773-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Ali, S., Tirumala, S.S., Sarrafzadeh, A.: Ensemble learning methods for decision making: status and future prospects. In: International Conference on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 211–216. IEEE (2015)

    Google Scholar 

  2. Bar, A., Rokach, L., Shani, G., Shapira, B., Schclar, A.: Improving simple collaborative filtering models using ensemble methods. In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38067-9_1

    CrossRef  Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  4. Erdal, H.I., Karakurt, O.: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. J. Hydrol. 477, 119–128 (2013). Elsevier

    CrossRef  Google Scholar 

  5. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer-Verlag New York, New York (2009)

    MATH  Google Scholar 

  6. Ghimire, B., Rogan, J., Galiano, V.R., Panday, P., Neeti, N.: An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience Remote Sens. 49(5), 623–643 (2012). Taylor & Francis

    CrossRef  Google Scholar 

  7. Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 595–604. ACM (2011)

    Google Scholar 

  8. Lavanya, D., Rani, K.U.: Ensemble decision making system for breast cancer data. Int. J. Comput. Appl. 51(17) (2012). Foundation of Computer Science

    Google Scholar 

  9. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006). IEEE

    CrossRef  Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  11. Saavedra, P., Barreiro, P., Durán, R., Crujeiras, R., Loureiro, M., Sánchez, V.E.: Choice-based recommender systems. In: Proceedings of RecSys 2016, Boston (2016)

    Google Scholar 

  12. Utku, A., Hacer, K., Yildiz, O., Akcayol, M.A.: Implementation of a new recommendation system based on decision tree using implicit relevance feedback. JSW 10(12), 1367–1374 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work has received financial support from the Ministry of Science and Innovation of Spain under grant TIN2014-56633-C3-1-R as well as from the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016–2019, ED431G/08) and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Almomani, A., Saavedra, P., Sánchez, E. (2017). Ensembles of Decision Trees for Recommending Touristic Items. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)