Koniocortex-Like Network Unsupervised Learning Surpasses Supervised Results on WBCD Breast Cancer Database

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)


Koniocortex-Like Network is a novel category of Bio-Inspired Neural Networks whose architecture and properties are inspired in the biological koniocortex, the first layer of the cortex that receives information from the thalamus. In the Koniocortex-Like Network competition and pattern classification emerges naturally due to the interplay of inhibitory interneurons, metaplasticity and intrinsic plasticity. Recently proposed, it has shown a big potential for complex tasks with unsupervised learning. Now for the first time, its competitive results are proved in a relevant standard real application that is the objective of state-of-the-art research: the diagnosis of breast cancer data from the Wisconsin Breast Cancer Database.


Metaplasticity Koniocortex Plasticity KLN WBCD Feature extraction Competition 


  1. 1.
    Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996)CrossRefGoogle Scholar
  2. 2.
    Abraham, W.C., Tate, W.P.: Metaplasticity: a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303–323 (1997)CrossRefGoogle Scholar
  3. 3.
    Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intell. Autom. Soft Comput. Spec. Issue Sig. Process. Soft Comput. 15(4), 681–694 (2009)Google Scholar
  4. 4.
    Andina, D., Ropero-Pelaez, J.: On the biological plausibility of artificial metaplasticity learning algorithm. Neurocomputing (2012).
  5. 5.
    Artola, A., Brocher, S., Singer, W.: Different voltage-dependent threshold for inducing long-term depression and long-term potentiation in slices of rat visual córtex. Nature 347, 69–72 (1990)CrossRefGoogle Scholar
  6. 6.
    Desai, N.S.: Homeostatic plasticity in the CNS: synaptic and intrinsic forms. J. Physiol. 97(4–6), 391–402 (2003)Google Scholar
  7. 7.
    Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999)CrossRefGoogle Scholar
  8. 8.
    Ferster, D., Chung, S., Wheat, H.: Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380(6571), 249–252 (1996)CrossRefGoogle Scholar
  9. 9.
    Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kaski, S., Kohonen, T.: Winner-take-all networks for physiological models of competitive learning. Neural Netw. 7(6/7), 973–984 (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mao, Z.H., Massaquoi, S.G.: Dynamics of Winner-Take-All competition in recurrent neural networks with lateral inhibition. IEEE Trans. Neural Netw. 18, 55–69 (2007)CrossRefGoogle Scholar
  12. 12.
    Marcano-Cedeño, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing 74(8), 1243–1250 (2011)CrossRefGoogle Scholar
  13. 13.
    Miller, K.D.: Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996)CrossRefGoogle Scholar
  14. 14.
    Quintanilla-Dominguez, J., Cortina-Januchs, M.G., Ojeda-Magaa, B., Jevtic, A., Vega-Corona, A., Andina, D.: Microcalcification detection applying artificial neural networks and mathematical morphology in digital mammograms. In: World Automation Congress (WAC) (2010)Google Scholar
  15. 15.
    Ropero-Peláez, F.J., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing (2012).
  16. 16.
    Ropero-Peláez, F.J., Andina, D.: The Koniocortex-like network: a new biologically plausible unsupervised neural network. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 163–174. Springer, Cham (2015). doi: 10.1007/978-3-319-18914-7_17 CrossRefGoogle Scholar
  17. 17.
    Ropero-Peláez, F.J., Aguiar-Furucho, M.A., Andina, D.: Intrinsic plasticity for natural competition in Koniocortex-like neural networks. Int. J. Neural Syst. 26(5), 1650040 (2016).
  18. 18.
    Yang, J.F., Chen, C.M.: Winner-Take-All neural network using the highest threshold. IEEE Trans. Neural Netw. 11, 194–199 (2000)CrossRefGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Group for Automation in Signals and CommunicationsUniversidad Politécnica de MadridMadridSpain
  2. 2.Center of Mathematics, Computation and CognitionUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations