Skip to main content

Semi-automated Ontology Development and Management System Applied to Medically Unexplained Syndromes in the U.S. Veterans Population

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10259))

Included in the following conference series:

  • 2304 Accesses

Abstract

Terminologies or ontologies to describe patient-reported information are lacking. The development and maintenance of ontologies is usually a manual, lengthy, and resource-intensive process. To support the development of medical specialty-specific ontologies, we created a semi-automated ontology development and management system (SEAM). SEAM supports ontology development by automatically extracting terms, concepts, and relations from narrative text, and then offering a streamlined graphical user interface to edit and create content in the ontology and finally export it in OWL format. The graphical user interface implements card sorting for synonym grouping and concept laddering for hierarchy construction. We used SEAM to create ontologies to support medically unexplained syndromes detection and management among veterans in the U.S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruber T.: A translation approach to portable ontology specifications. Knowledge Acquisition Stanford, CA, Technical report KSL, vol. 5(2), pp. 199–220 (1993)

    Google Scholar 

  2. Doing-Harris, K., Meystre, S.M., Samore, M., Ceusters, W.: Applying ontological realism to medically unexplained syndromes. Stud. Health Technol. Inform. 192, 97–101 (2013)

    Google Scholar 

  3. Protégé. http://protege.stanford.edu

  4. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). doi:10.1007/11428817_21

    Chapter  Google Scholar 

  5. Faure, D., Nédellec, C.: A corpus-based conceptual clustering method for verb frames and ontology acquisition. In: LREC workshop on adapting lexical and corpus resources to sublanguages and applications, pp. 707–728 (1998)

    Google Scholar 

  6. Wang, Y., Sure, Y., Stevens, R., Rector, A.: Knowledge elicitation plug-in for protege: card sorting and laddering. In: Mizoguchi, R., Shi, Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 552–565. Springer, Heidelberg (2006). doi:10.1007/11836025_53

    Chapter  Google Scholar 

  7. Upchurch, L., Rugg, G., Kitchenham, B.: Using card sorts to elicit web page quality attributes. IEEE Softw. 18(4), 84–89 (2001)

    Article  Google Scholar 

  8. Shadbolt, N., O’hara, K., Crow, L.: The experimental evaluation of knowledge acquisition techniques and methods: history, problems and new directions. Int. J. Hum.-Comput. Stud. 51(4), 729–755 (1999)

    Article  Google Scholar 

  9. Wang, Y., Völker, J., Haase, P.: Towards semi-automatic ontology building supported by large-scale knowledge acquisition. In: AAAI Fall Symposium on Semantic Web for Collaborative Knowledge Acquisition, vol. 6, p. 06 (2006)

    Google Scholar 

  10. Doing-Harris, K., Livnat, Y., Meystre, S.: Automated concept and relationship extraction for the semi-automated ontology management (SEAM) system. J. Biomed. Semant. 6(1), 15 (2015)

    Article  Google Scholar 

  11. Doing-Harris, K., Boonsirisumpun, N., Potter, K., Livnat, Y., Meystre, S.M.: Automated concept and relationship extraction for ontology development. In: AMIA, p. 344 (2013)

    Google Scholar 

  12. Eclipse RDF4 J. http://rdf4j.org

  13. Oracle Corp. JavaFX. http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

  14. World Health Organization. ICD-11 Revision. http://www.who.int/classifications/icd/revision/en/

  15. Uzuner, O., Solti, I., Xia, F., Cadag, E.: Community annotation experiment for ground truth generation for the i2b2 medication challenge. J. Am. Med. Inf. Assoc. 17(5), 519–523 (2010)

    Google Scholar 

Download references

Acknowledgments

We thank Yarden Livnat and Kristin Potter for their work with the frontend graphical user interface. Project funded under VA HSR&D contract 11RT0150. SEAM is available at http://kdh-nlp.org/Seam-project/seam-home.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane M. Meystre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Meystre, S.M., Doing-Harris, K. (2017). Semi-automated Ontology Development and Management System Applied to Medically Unexplained Syndromes in the U.S. Veterans Population. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59758-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59757-7

  • Online ISBN: 978-3-319-59758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics